
Oracle Rdb™

SQL Reference Manual
Volume 5

Oracle Rdb Release 7.1.4.3 for OpenVMS Alpha

December 2005

®

SQL Reference Manual, Volume 5

Oracle Rdb Release 7.1.4.3 for OpenVMS Alpha

Copyright © 1987, 2005 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary
information of Oracle Corporation; they are provided under a license agreement containing
restrictions on use and disclosure and are also protected by copyright, patent, and
other intellectual and industrial property laws. Reverse engineering, disassembly, or
decompilation of the programs is prohibited.

The information contained in this document is subject to change without notice. If you find
any problems in the documentation, please report them to us in writing. Oracle Corporation
does not warrant that this document is error free. Except as may be expressly permitted in
your license agreement for these Programs, no part of these Programs may be reproduced
or transmitted in any form or by any means, electronic or mechanical, for any purpose,
without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the
programs on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation
and technical data delivered to U.S. Government customers are ‘‘commercial computer
software’’ or ‘‘commercial technical data’’ pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in
FAR 52.227-19, Commercial Computer Software—Restricted Rights (June 1987). Oracle
Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or
other inherently dangerous applications. It shall be the licensee’s responsibility to take all
appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and Oracle Corporation disclaims
liability for any damages caused by such use of the Programs.

Oracle is a registered trademark, and Oracle Rdb, Hot Standby, LogMiner for Rdb, Oracle
CODASYL DBMS, Oracle RMU, Oracle CDD/Repository, Oracle SQL/Services, Oracle Trace,
and Rdb are trademarks or registered trademarks of Oracle Corporation. Other names may
be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services
from third parties. Oracle is not responsible for the availability of, or any content provided
on, third-party Web sites. You bear all risks associated with the use of such content. If you
choose to purchase any products or services from a third party, the relationship is directly
between you and the third party. Oracle is not responsible for: (a) the quality of third-party
products or services, or (b) fulfilling any of the terms of the agreement with the third party,
including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you
may incur from dealing with any third party.

Contents

Send Us Your Comments . xi

Preface . xiii

A Error Messages

A.1 Types of Error Messages and Their Format . A–1
A.2 Error Message Documentation . A–3
A.3 Errors Generated When You Use SQL Statements A–4
A.4 Identifying Precompiler and Module Language Errors A–7

B SQL Standards

B.1 ANSI/ISO/IEC SQL 1999 Standard . B–1
B.2 SQL:1999 Features in Rdb . B–6
B.3 Establishing SQL:1999 Semantics . B–8

C The SQL Communications Area (SQLCA) and the Message Vector

C.1 The SQLCA . C–2
C.2 The Message Vector . C–11
C.3 Declarations of the SQLCA and the Message Vector C–12
C.4 Using SQLCA Include Files . C–19
C.5 SQLSTATE . C–19
C.5.1 Definition of the SQLSTATE Status Parameter C–20
C.5.2 Use of the SQLSTATE Status Parameter . C–24

iii

D The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

D.1 Purpose of the SQLDA . D–1
D.2 How SQL and Programs Use the SQLDA . D–3
D.3 Declaring the SQLDA . D–5
D.4 Description of Fields in the SQLDA . D–9
D.5 Parameters Associated with the SQLDA: SQLSIZE and SQLDAPTR . . . D–14
D.6 Purpose of the SQLDA2 . D–15
D.6.1 Declaring the SQLDA2 . D–16
D.6.2 Description of Fields in the SQLDA2 . D–18

E Logical Names Used by SQL

F Obsolete SQL Syntax

F.1 Incompatible Syntax . F–1
F.1.1 Incompatible Syntax Containing the SCHEMA Keyword F–2
F.1.1.1 CREATE SCHEMA Meaning Incompatible F–2
F.1.1.2 SHOW SCHEMA Meaning Incompatible F–2
F.1.1.3 DROP SCHEMA Meaning Incompatible F–2
F.1.2 DROP TABLE Now Restricts by Default . F–3
F.1.3 Database Handle Names Restricted to 25 Characters F–3
F.1.4 Deprecated Default Semantics of the ORDER BY Clause F–3
F.1.5 Change to EXTERNAL NAMES IS Clause . F–4
F.2 Deprecated Syntax . F–4
F.2.1 Command Line Qualifiers . F–6
F.2.2 Deprecated Interactive SQL Statements . F–6
F.2.3 Constraint Conformance to the ANSI/ISO SQL Standard F–7
F.2.4 Obsolete Keywords . F–7
F.2.5 Obsolete Built-in Functions . F–8
F.3 Deprecated Logical Names . F–9
F.3.1 RDB$CHARACTER_SET Logical Name . F–9
F.4 Reserved Words Deprecated as Identifiers . F–9
F.4.1 ANSI/ISO 1989 SQL Standard Reserved Words F–10
F.4.2 ANSI/ISO 1992 SQL Standard Reserved Words F–11
F.4.3 ANSI/ISO 1999 SQL Standard Reserved Words F–12
F.4.4 Words From ANSI/ISO SQL3 Draft Standard No Longer

Reserved . F–14
F.5 Punctuation Changes . F–14
F.5.1 Single Quotation Marks Required for String Literals F–14
F.5.2 Double Quotation Marks Required for ANSI/ISO SQL Delimited

Identifiers . F–14

iv

F.5.3 Colons Required Before Host Language Variables in SQL Module
Language . F–15

F.6 Suppressing Diagnostic Messages . F–15

G Oracle RDBMS Compatibility

G.1 Oracle RDBMS Functions . G–1
G.1.1 Built-In Oracle SQL Functions . G–1
G.1.2 Optional Oracle SQL Functions . G–4
G.2 Oracle Style Outer Join . G–12
G.2.1 Outer Join Examples . G–13
G.2.2 Oracle Server Predicate . G–17

H Information Tables

H.1 Introduction to Information Tables . H–1
H.2 Restrictions for Information Tables . H–5

I System Tables

I.1 Using Data Dictionary . I–1
I.2 Modifying System Tables . I–1
I.3 Updating Metadata . I–2
I.4 LIST OF BYTE VARYING Metadata . I–2
I.5 Read Only Access . I–3
I.6 All System Tables . I–6
I.6.1 RDB$CATALOG_SCHEMA . I–8
I.6.2 RDB$COLLATIONS . I–8
I.6.3 RDB$CONSTRAINTS . I–9
I.6.4 RDB$CONSTRAINT_RELATIONS . I–10
I.6.5 RDB$DATABASE . I–11
I.6.6 RDB$FIELD_VERSIONS . I–15
I.6.7 RDB$PARAMETER_SUB_TYPE . I–18
I.6.8 RDB$FIELD_SUB_TYPE . I–18
I.6.9 RDB$FIELDS . I–20
I.6.10 RDB$GRANTED_PROFILES . I–24
I.6.11 RDB$INDEX_SEGMENTS . I–24
I.6.12 RDB$INDICES . I–25
I.6.13 RDB$INTERRELATIONS . I–28
I.6.14 RDB$MODULES . I–30
I.6.15 RDB$OBJECT_SYNONYMS . I–31
I.6.16 RDB$PARAMETERS . I–32
I.6.17 RDB$PRIVILEGES . I–33

v

I.6.18 RDB$PROFILES . I–35
I.6.19 RDB$QUERY_OUTLINES . I–36
I.6.20 RDB$RELATION_CONSTRAINTS . I–37
I.6.20.1 RDB$CONSTRAINT_TYPE . I–38
I.6.21 RDB$RELATION_CONSTRAINT_FLDS . I–39
I.6.22 RDB$RELATION_FIELDS . I–40
I.6.23 RDB$RELATIONS . I–42
I.6.24 RDB$ROUTINES . I–45
I.6.24.1 RDB$SOURCE_LANGUAGE . I–48
I.6.25 RDB$SEQUENCES . I–48
I.6.26 RDB$STORAGE_MAPS . I–50
I.6.27 RDB$STORAGE_MAP_AREAS . I–51
I.6.28 RDB$SYNONYMS . I–52
I.6.29 RDB$TRIGGERS . I–54
I.6.29.1 TRIGGER_TYPE_VAL . I–56
I.6.30 RDB$VIEW_RELATIONS . I–56
I.6.31 RDB$WORKLOAD . I–57

Index

Examples

C–1 Fields in the SQLCA . C–3
C–2 Including Error Literals in a COBOL Program C–9
C–3 Ada SQLCA and Message Vector Declaration C–13
C–4 BASIC SQLCA and Message Vector Declaration C–13
C–5 C SQLCA and Message Vector Declaration . C–15
C–6 COBOL SQLCA and Message Vector Declaration C–16
C–7 FORTRAN SQLCA and Message Vector Declaration C–16
C–8 Pascal SQLCA and Message Vector Declaration C–17
C–9 PL/I SQLCA and Message Vector Declaration C–18
C–10 Declaring SQLSTATE in a C Program . C–25
D–1 Declaration of the SQLDA in Ada . D–7
D–2 Declaration of the SQLDA in BASIC . D–7
D–3 Declaration of the SQLDA in C . D–8
D–4 Declaration of the SQLDA in PL/I . D–9
D–5 Declaration of the SQLDA2 in Ada . D–16
D–6 Declaration of the SQLDA2 in BASIC . D–17
D–7 Declaration of the SQLDA2 in C . D–18

vi

Figures

C–1 Fields of the Message Vector . C–12

Tables

A–1 Explanation of Error Message Severity Codes A–2
A–2 SQL Errors Generated at Run Time . A–5
B–1 Fully Supported Core SQL:1999 Features . B–3
B–2 Partially Supported Core SQL:1999 Features B–4
B–3 Unsupported Core SQL:1999 Features . B–6
C–1 Values Returned to the SQLCODE Field . C–4
C–2 Including the Error Literals File in Programs C–8
C–3 SQLSTATE Status Parameter Values—Sorted by SQLSTATE Class

and Subclass . C–20
C–4 Include Files for SQLSTATE . C–25
D–1 Fields in the SQLDA . D–9
D–2 Codes for SQLTYPE Field of SQLDA and SQLDA2 D–13
D–3 Fields in the SQLDA2 . D–19
D–4 Codes for Interval Qualifiers in the SQLDA2 D–25
D–5 Codes for Date-Time Data Types in the SQLDA2 D–25
D–6 Values for the SQLCHAR_SET_NAME Field D–26
E–1 Summary of SQL Logical Names . E–1
E–2 Valid Equivalence Names for RDB$CHARACTER_SET Logical

Name . E–3
F–1 Deprecated Syntax for SQL . F–4
F–2 Obsolete SQL Keywords . F–7
G–1 Built-In Oracle SQL Functions . G–1
G–2 Optional Oracle SQL Functions . G–5
H–1 Supported Information Tables . H–2

vii

Send Us Your Comments

Oracle Rdb for OpenVMS
Oracle SQL Reference Manual, Release 7.1.4.1
Oracle Corporation welcomes your comments and suggestions on the quality
and usefulness of this publication. Your input is an important part of the
information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most?

If you find any errors or have any other suggestions for improvement, please
indicate the document title, chapter, section, and page number (if available).
You can send comments to us in the following ways:

• Electronic mail:nedc-doc_us@oracle.com

• FAX — 603-897-3825 Attn: Oracle Rdb

• Postal service:
Oracle Corporation
Oracle Rdb Documentation
One Oracle Drive
Nashua, NH 03062-2804
USA

If you would like a reply, please give your name, address, telephone number,
and (optionally) electronic mail address.

If you have problems with the software, please contact your local Oracle
Support Services.

xi

Preface

This manual describes the syntax and semantics of the statements and
language elements for the SQL (structured query language) interface to the
Oracle Rdb database software.

Intended Audience
To get the most out of this manual, you should be familiar with data processing
procedures, basic database management concepts and terminology, and the
OpenVMS operating system.

Operating System Information
You can find information about the versions of the operating system and
optional software that are compatible with this version of Oracle Rdb in the
Oracle Rdb Installation and Configuration Guide.

For information on the compatibility of other software products with this
version of Oracle Rdb, refer to the Oracle Rdb Release Notes.

Contact your Oracle representative if you have questions about the
compatibility of other software products with this version of Oracle Rdb.

Structure
This manual is divided into five volumes. Volume 1 contains Chapter 1 through
Chapter 5 and an index. Volume 2 contains Chapter 6 and an index. Volume 3
contains Chapter 7 and an index. Volume 4 contains Chapter 8 and an index.
Volume 5 contains the appendixes and an index.

The index for each volume contains entries for the respective volume only and
does not contain index entries from the other volumes in the set.

xiii

The following table shows the contents of the chapters and appendixes in
Volumes 1, 2, 3, 4, and 5 of the Oracle Rdb SQL Reference Manual:

Chapter 1 Introduces SQL (structured query language) and briefly
describes SQL functions. This chapter also describes
conformance to the ANSI standard, how to read syntax
diagrams, executable and nonexecutable statements,
keywords and line terminators, and support for Multivendor
Integration Architecture.

Chapter 2 Describes the language and syntax elements common to
many SQL statements.

Chapter 3 Describes the syntax for the SQL module language and the
SQL module processor command line.

Chapter 4 Describes the syntax of the SQL precompiler command line.

Chapter 5 Describes SQL routines.

Chapter 6
Chapter 7
Chapter 8

Describe in detail the syntax and semantics of the SQL
statements. These chapters include descriptions of data
definition statements, data manipulation statements, and
interactive control commands.

Appendix A Describes the different types of errors encountered in SQL
and where they are documented.

Appendix B Describes the SQL standards to which Oracle Rdb conforms.

Appendix C Describes the SQL Communications Area, the message
vector, and the SQLSTATE error handling mechanism.

Appendix D Describes the SQL Descriptor Areas and how they are used
in dynamic SQL programs.

Appendix E Summarizes the logical names that SQL recognizes for
special purposes.

Appendix F Summarizes the obsolete SQL features of the current Oracle
Rdb version.

Appendix G Summarizes the SQL functions that have been added to
the Oracle Rdb SQL interface for convergence with Oracle7
SQL. This appendix also describes the SQL syntax for
performing an outer join between tables.

Appendix H Describes information tables that can be used with Oracle
Rdb.

Appendix I Describes the Rdb system tables.

Index Index for each volume.

xiv

Related Manuals
For more information on Oracle Rdb, see the other manuals in this
documentation set, especially the following:

• Oracle Rdb Guide to Database Design and Definition

• Oracle Rdb7 Guide to Database Performance and Tuning

• Oracle Rdb Introduction to SQL

• Oracle Rdb Guide to SQL Programming

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

Often in examples the prompts are not shown. Generally, they are shown
where it is important to depict an interactive sequence exactly; otherwise, they
are omitted.

The following conventions are also used in this manual:

.

.

.

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted.

e, f, t Index entries in the printed manual may have a lowercase e, f, or t
following the page number; the e, f, or t is a reference to the example,
figure, or table, respectively, on that page.

boldface
text

Boldface type in text indicates a new term.

< > Angle brackets enclose user-supplied names in syntax diagrams.

[] Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the command language prompt. This symbol
indicates that the command language interpreter is ready for input.

xv

References to Products
The Oracle Rdb documentation set to which this manual belongs often refers to
the following Oracle Corporation products by their abbreviated names:

• In this manual, Oracle Rdb refers to Oracle Rdb for OpenVMS. Version 7.1
of Oracle Rdb software is often referred to as V7.1.

• Oracle CDD/Repository software is referred to as the dictionary, the data
dictionary, or the repository.

• Oracle ODBC Driver for Rdb software is referred to as the ODBC driver.

• OpenVMS means the OpenVMS Alpha operating system.

xvi

A
Error Messages

This appendix describes:

• The types and format of error messages you can encounter when using
SQL

• How to find and use the documentation for error messages

A.1 Types of Error Messages and Their Format
You can receive messages not only from SQL, but also from underlying
software.

Messages you encounter while using SQL come from the following levels:

• The SQL interface itself. Messages generated by SQL are preceded by a
facility code of SQL. For example:

%SQL-E-CURALROPE, Cursor K was already open

In programs, you can use the message vector structure in the SQL_
SIGNAL, SQL_GET_ERROR_TEXT, SQL_GET_MESSAGE_VECTOR, and
SQL$GET_ERROR_TEXT routines, described in Section C.2, to signal
errors and return the corresponding message text.

• Common Operating System Interface (COSI) facility error messages. For
example:

%COSI-F-NOQUAL, qualifiers not allowed - supply only verb and parameters

• The underlying database product. The facility code for messages generated
by the underlying database depends on the database product with which
you are using SQL.

Oracle Rdb messages are preceded by a facility code of RDMS. For example:

%RDMS-F-INVDB_NAME, invalid database name

Refer to the appropriate documentation for other products.

Error Messages A–1

• The repository. Messages generated by the repository are preceded by a
facility code of CDD. For example:

%CDD-E-ERRSHOW, error displaying object

Whatever the source of an error message, the format is the same. All error
messages contain the following elements:

• The facility name preceded by a percent sign (%) or a hyphen (-)

• The severity code followed by a hyphen (-)

Table A–1 lists the severity codes in order of increasing severity.

• The diagnostic error message name followed by a comma (,)

This name identifies the message. In the documentation for error
messages, the messages are alphabetized within each facility by diagnostic
error message name.

• The diagnostic error message text

The text is a brief description of the problem. Error messages may
contain string substitutions that are specific to a user’s error. In the
documentation for error messages, these string substitutions are delimited
by angle brackets (< >) within a message. For example:

%SQL-F-CURNOTOPE, Cursor <str> is not opened

If you receive this message, SQL substitutes the actual string (in this case,
a cursor name) for <str>.

You can suppress the display of any or all elements of an error message with
the SET MESSAGE command in DCL.

Table A–1 Explanation of Error Message Severity Codes

Code Severity Explanation

S Success Indicates that your command executed successfully.

I Information Reports on actions taken by the software.

(continued on next page)

A–2 Error Messages

Table A–1 (Cont.) Explanation of Error Message Severity Codes

Code Severity Explanation

W Warning Indicates error conditions for which you may not need to
take corrective action.

E Error Indicates conditions that are not fatal, but that must be
handled or corrected.

F Fatal Indicates conditions that are fatal and must be handled or
corrected.

A.2 Error Message Documentation
Because error messages are updated frequently, documentation is provided in
the following text files:

• SQL messages:

In SYS$HELP:SQL$MSGnn.DOC

where nn is the current version number for Oracle Rdb.

This file contains the same text as the Help Errors help topic in interactive
SQL.

• RDB messages:

In SYS$HELP:RDB_MSGnn.DOC

where nn is the current version number for Oracle Rdb.

• RDMS messages:

In SYS$HELP:RDMS_MSG.DOC

• COSI messages:

In SYS$HELP:COSI_MSG.DOC

• SQL/Services messages:

In SYS$HELP:SQLSRV$MSG.DOC

• Repository messages:

In SYS$HELP:CDD_MSG.DOC

The message documentation for all the facilities follows the same format, with
messages alphabetized by message name. After the message name and text,
the documentation includes an explanation and suggested user action.

Error Messages A–3

The online message documentation files may be updated even if you do
not install a new version of SQL. In particular, any installation of Oracle
Rdb databases may replace the RDB_MSG.DOC file with one that is more
up-to-date.

You can print the online message documentation files for reference. In
addition, you can search the files for the message information you need.

A.3 Errors Generated When You Use SQL Statements
When you write application programs that use SQL, you must use one of the
following methods to return the error messages:

• The SQLCODE parameter, which stores a value that represents the
execution status of SQL statements.

• The SQLSTATE status parameter, a string of five characters, provides error
handling that complies with the ANSI/ISO SQL standard. See Appendix C
for more information on the SQLSTATE status parameter.

• The longword array RDB$MESSAGE_VECTOR, which stores information
about the execution status of SQL statements.

• The calls sql_signal, sql_get_error_text, and SQL$GET_ERROR_TEXT,
which use error information returned through the RDB$MESSAGE_
VECTOR array.

• The call sql_get_message_vector, which retrieves information from the
message vector about the status of the last SQL statement.

• The SQL statement WHENEVER, which provides error handling for all
SQL statements that follow the WHENEVER statement. (However, you
cannot use this statement in programs that call procedures in an SQL
module.)

For more information about handling errors using SQL options, see the Oracle
Rdb Guide to SQL Programming.

Table A–2 lists SQL statements and errors they commonly generate at run
time. This is not an exhaustive list. The second column lists the error
message status code and the third column lists the corresponding value of the
SQLCODE field in the SQLCA. See Appendix C for more information about
SQLCODE values.

A–4 Error Messages

Table A–2 SQL Errors Generated at Run Time

SQL Statement Error Status Code2 SQLCODE Value

ALTER DOMAIN SQL$_BAD_LENGTH –1029

SQL$_BAD_SCALE –1030

SQL$_NO_SUCH_FIELD –1027

ALTER TABLE RDB$_DEADLOCK –913

RDB$_INTEG_FAIL –1001

RDB$_LOCK_CONFLICT –1003

RDB$_NO_PRIV –1028

RDB$_READ_ONLY_REL –1031

RDB$_READ_ONLY_TRANS –817

RDB$_READ_ONLY_VIEW –1031

RDB$_REQ_NO_TRANS Not available1

SQL$_BAD_LENGTH –1029

SQL$_BAD_SCALE –1030

SQL$_COLEXISTS –1023

SQL$_FLDNOTDEF –1024

SQL$_FLDNOTINREL –1024

SQL$_NO_SUCH_FIELD –1027

ATTACH RDB$_REQ_WRONG_DB –1020

CLOSE SQL$_CURNOTOPE –501

COMMIT RDB$_DEADLOCK –913

RDB$_INTEG_FAIL –1001

RDB$_LOCK_CONFLICT –1003

SQL$_NO_TXNOUT –1005

CREATE DOMAIN SQL$_FIELD_EXISTS –1026

CREATE VIEW RDB$_DEADLOCK –913

RDB$_LOCK_CONFLICT –1003

SQL$_NO_SUCH_FIELD –1027

1No specific numeric value. Check the SQLCODE for negative values.
2-1 is a general error SQLCODE value that does not correspond to any specific error. Use sql_
signal or sql_get_error_text to return a meaningful error.

(continued on next page)

Error Messages A–5

Table A–2 (Cont.) SQL Errors Generated at Run Time

SQL Statement Error Status Code2 SQLCODE Value

SQL$_REL_EXISTS –1025

DELETE RDB$_DEADLOCK –913

RDB$_INTEG_FAIL –1001

RDB$_LOCK_CONFLICT –1003

DELETE . . . WHERE RDB$_DEADLOCK –913

CURRENT OF . . . RDB$_INTEG_FAIL –1001

SQL$_CURNOTOPE –501

SQL$_FETNOTDON –508

FETCH RDB$_DEADLOCK –913

RDB$_LOCK_CONFLICT –1003

RDB$_STREAM_EOF 100

SQL$_CURNOTOPE –501

SQL$_NULLNOIND –305

INSERT RDB$_ARITH_EXCEPT –304

RDB$_DEADLOCK –913

RDB$_INTEG_FAIL –1001

RDB$_LOCK_CONFLICT –1003

RDB$_NO_DUP –803

RDB$_NO_PRIV –1028

RDB$_NOT_VALID –1002

RDB$_OBSOLETE_METADATA –1032

RDB$_READ_ONLY_REL –1031

RDB$_READ_ONLY_TRANS –817

RDB$_READ_ONLY_VIEW –1031

RDB$_REQ_NO_TRANS Not available1

RDB$_REQ_WRONG_DB –1020

RDB$_UNRES_REL –1033

1No specific numeric value. Check the SQLCODE for negative values.
2-1 is a general error SQLCODE value that does not correspond to any specific error. Use sql_
signal or sql_get_error_text to return a meaningful error.

(continued on next page)

A–6 Error Messages

Table A–2 (Cont.) SQL Errors Generated at Run Time

SQL Statement Error Status Code2 SQLCODE Value

OPEN RDB$_DEADLOCK –913

RDB$_LOCK_CONFLICT –1003

ROLLBACK SQL$_NO_TXNOUT –1005

SET TRANSACTION RDB$_DEADLOCK –913

RDB$_LOCK_CONFLICT –1003

SQL$_BAD_TXN_STATE –1004

singleton SELECT RDB$_DEADLOCK –913

RDB$_LOCK_CONFLICT –1003

SQL$_NULLNOIND –305

SQL$_SELMORVAL –811

UPDATE RDB$_DEADLOCK –913

RDB$_INTEG_FAIL –1001

RDB$_LOCK_CONFLICT –1003

RDB$_NO_DUP –803

RDB$_NOT_VALID –1002

RDB$_READ_ONLY_REL –1031

UPDATE . . . WHERE RDB$_DEADLOCK –913

CURRENT OF . . . RDB$_INTEG_FAIL –1001

RDB$_LOCK_CONFLICT –1003

RDB$_NO_DUP –803

RDB$_NOT_VALID –1002

SQL$_CURNOTOPE –501

SQL$_FETNOTDON –508

2-1 is a general error SQLCODE value that does not correspond to any specific error. Use sql_
signal or sql_get_error_text to return a meaningful error.

A.4 Identifying Precompiler and Module Language Errors
The SQL precompiler and the SQL module language processor let you identify
(flag) syntax that is not ANSI/ISO SQL standard. See Chapter 3 and Chapter
4 for more information.

Error Messages A–7

Error messages for SQL precompilers and SQL module language are flagged in
the following way:

EXEC SQL SELECT SUM(DISTINCT QTY), AVG(DISTINCT QTY) /* multiple distincts*/
%SQL-I-NONSTADIS, (1) The standard only permits one DISTINCT in a select expression

INTO :int1, :int2 FROM D.SP; /* in a query */

A–8 Error Messages

B
SQL Standards

This appendix describes the SQL standards to which Oracle Rdb conforms.

B.1 ANSI/ISO/IEC SQL 1999 Standard

• The SQL interface to Oracle Rdb is referred to as SQL. This interface is
the Oracle Rdb implementation of the SQL standard commonly referred to
as the ANSI/ISO SQL standard or SQL99.

• The new SQL standard adopted in 1999 consists of the following five
parts:

ANSI/ISO/IEC 9075-1:1999, Information technology - Database
language - SQL - Part 1: Framework (SQL/Framework)

ANSI/ISO/IEC 9075-2:1999, Information technology - Database
language - SQL - Part 2: Foundation (SQL/Foundation)

ANSI/ISO/IEC 9075-3:1999, Information technology - Database
language - SQL - Part 3: Call-Level Interface (SQL/CLI)

ANSI/ISO/IEC 9075-4:1999, Information technology - Database
language - SQL - Part 4: Persistent Stored Modules (SQL/PSM)

ANSI/ISO/IEC 9075-5:1999, Information technology - Database
language - SQL - Part 5: Host Language Bindings (SQL/Bindings)

In general, the Oracle Rdb release 7.1 documentation refers to this
standard as SQL:1999. SQL:1999 supersedes the SQL92 standard.

The minimal conformance level for SQL:1999 is known as Core. Core
SQL:1999 is a superset of the SQL92 Entry Level specification. Oracle Rdb
is broadly compatible with the SQL:1999 Core specification. However, a
small number of SQL:1999 Core features are not currently implemented
in Oracle Rdb or differ from the Oracle Rdb implementation. Oracle
Corporation is committed to fully supporting SQL:1999 Core functionality
in a future release, while providing upward compatibility for existing
applications.

SQL Standards B–1

Additionally, Oracle Rdb also complies to most of the ANSI/ISO/IEC 9075-
4:1999 (Persistent Stored Modules) portion of the standard.

The following functionality described by SQL:1999 CORE is not currently
available in Oracle Rdb:

• SQL99 flagger

The flagger would alert the programmer to extensions to the SQL:1999
SQL database language.

• Basic Information Schema, and Documentation Schema

A set of tables and views that describe the database definitions, similar in
content to the Rdb system tables.

• TIME and TIMESTAMP precision up to 6 fractional seconds

Oracle Rdb currently supports a maximum fractional second precision of 2.

• CREATE TYPE

The CREATE TYPE statement in the SQL:1999 CORE allows a user to
define a typed name, similar to a domain, but with strong typing rules.

• REVOKE . . . { RESTRICT | CASCADE }

These variations to REVOKE requires that a check be performed during
protection updates so that privilege changes do not effect the correct
execution of existing procedures and functions.

You can obtain a copy of ANSI standards from the following address:

American National Standards Institute
11 West 42nd Street
New York, NY 10036
USA
Telephone: 212.642.4900
FAX: 212.398.0023

Or from their web site:

http://webstore.ansi.org/ansidocstore/default.asp

A subset of ANSI standards, including the SQL standard, are X3 or NCITS
standards. You can obtain these from the National Committee for Information
Technology Standards (NCITS) at:

http://www.cssinfo.com/ncitsquate.html

B–2 SQL Standards

The Core SQL:1999 features that Oracle Rdb fully supports are listed in
Table B–1.

Table B–1 Fully Supported Core SQL:1999 Features

Feature ID Feature

E011 Numeric data types

E021 Character data types

E031 Identifiers

E051 Basic query specification

E061 Basic predicates and search conditions

E071 Basic query expressions

E081 Basic privileges

E091 Set functions

E101 Basic data manipulation

E111 Single row SELECT statement

E121 Basic cursor support

E131 Null value support (nulls in lieu of values)

E141 Basic integrity constraints

E151 Basic transaction support

E152 Basic SET TRANSACTION statement

E153 Updatable queries with subqueries

E161 SQL comments using leading double minus

E171 SQLSTATE support

E182 Module language

F041 Basic joined table

F081 UNION and EXCEPT in views

F131 Grouped operations

F181 Multiple module support

F201 CAST function

F221 Explicit defaults

F261 CASE expression

(continued on next page)

SQL Standards B–3

Table B–1 (Cont.) Fully Supported Core SQL:1999 Features

Feature ID Feature

F311 Schema definition statement

F471 Scalar subquery values

F481 Expanded NULL predicate

Core SQL:1999 features that Oracle Rdb partially supports are listed in
Table B–2.

Table B–2 Partially Supported Core SQL:1999 Features

Feature ID Feature Partial Support

F031 Basic schema Oracle Rdb fully supports the following manipulation
subfeatures:

• F031-01, Clause 11, "Schema definition and
manipulation": Selected facilities as indicated by
the subfeatures of this Feature

• F031-02, CREATE VIEW statement

• F031-03, GRANT statement

• F031-04, ALTER TABLE statement: ADD
COLUMN clause

• F031-13, DROP TABLE statement: RESTRICT
clause

• F031-16, DROP VIEW statement: RESTRICT
clause

Oracle Rdb does not support the following subfeature:

• F031-19, REVOKE statement: RESTRICT clause

(continued on next page)

B–4 SQL Standards

Table B–2 (Cont.) Partially Supported Core SQL:1999 Features

Feature ID Feature Partial Support

F051 Basic date and time Oracle Rdb fully supports the following subfeatures:

• F051-01, DATE data type (including support of
DATE literal)

• F051-02, TIME data type (including support of
TIME literal) with fractional seconds precision of
at least 0.

• F051-03, TIMESTAMP data type (including
support of TIMESTAMP literal) with the
maximum fractional seconds precision of 2

• F051-04, comparison predicate on DATE, TIME,
and TIMESTAMP data types

• F051-05, explicit CAST between datetime types
and character types

• F051-06, CURRENT_DATE

• F051-07, LOCALTIME

• F051-08, LOCALTIMESTAMP

Oracle Rdb does not support the following subfeature:

• F051-03, fractional seconds precision greater than
2

(continued on next page)

SQL Standards B–5

Table B–2 (Cont.) Partially Supported Core SQL:1999 Features

Feature ID Feature Partial Support

T321 Basic SQL-invoked
routines

Oracle Rdb fully supports the following subfeatures:

• T321-01, user-defined functions with no
overloading

• T321-02, user-defined stored procedures with no
overloading

• T321-03, function invocation

• T321-04, CALL statement

• T321-05, RETURN statement

Oracle Rdb does not support the following subfeatures:

• T321-06, ROUTINES view

• T321-07, PARAMETERS view

The Core SQL:1999 features that Oracle Rdb does not support are listed in
Table B–3.

Table B–3 Unsupported Core SQL:1999 Features

Feature ID Feature

F021 Basic information schema; you can get this information from the Oracle Rdb
system tables

F501 Features and conformance views

F812 Basic flagging; Oracle Rdb’s SQL flagger only shows up through SQL92

S011 Distinct data types

B.2 SQL:1999 Features in Rdb
Oracle Rdb release 7.1 adds the following SQL:1999 features to SQL:

• AND CHAIN clause for COMMIT and ROLLBACK

• LOCALTIME, LOCALTIMESTAMP, ABS functions

• START TRANSACTION statement

• ITERATE loop control statement

B–6 SQL Standards

• WHILE looping statement using revised SQL:1999 syntax

• REPEAT looping statement

• Searched CASE statement

• DETERMINISTIC, and NOT DETERMINISTIC attributes

These clauses replace NOT VARIANT and VARIANT attributes,
respectively.

• RETURNS NULL ON NULL INPUT and CALLED ON NULL INPUT
clauses for functions

• Support for module global variables which can be accessed by all routines
in a module.

• DEFAULT VALUES clause for INSERT

• DEFAULT keyword for INSERT and UPDATE

• Full SIGNAL statement syntax

• BETWEEN SYMMETRIC predicate support

• USER and ROLE support including the GRANT/REVOKE enhancements

• INITIALLY IMMEDIATE and INITIALLY DEFERRED clauses for
constraints

• UNIQUE predicate

• TABLE query specification

This is a shorthand for SELECT * FROM

• DISTINCT keyword for UNION

• FOREIGN KEY reference semantics

The columns listed by the REFERENCES clause can be in a different order
to that of the matching PRIMARY KEY or UNIQUE constraint. Requires
SQL99 dialect.

• ALTER MODULE, ALTER PROCEDURE and ALTER FUNCTION
statements

• EXCEPT DISTINCT operator

• INTERSECT DISTINCT operator

• CORRESPONDING clause for UNION, EXCEPT and INTERSECT
operators

SQL Standards B–7

• VAR_POP, VAR_SAMP, STDDEV_POP, STDDEV_SAMP statistical
operators

• FILTER modifier for statistical functions

B.3 Establishing SQL:1999 Semantics
The following commands can be used to establish the SQL:1999 database
language standard semantics:

• SET DIALECT

• SET QUOTING RULES

• SET KEYWORD RULES

• SET DEFAULT DATE FORMAT

For example:

SQL> SET DIALECT ’SQL99’;

In most cases, the semantics of the SQL99 dialect are the same as SQL92.
As new features are added, these may have different semantics in these two
dialects.

The following command displays the current settings for this connection:

SQL> SHOW CONNECTION <connectionname>

For example:

SQL> show connection rdb$default_connection
Connection: RDB$DEFAULT_CONNECTION
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITHI
Dialect: SQL99
Default character unit: CHARACTERS
Keyword Rules: SQL99
View Rules: ANSI/ISO
Default DATE type: DATE ANSI
Quoting Rules: ANSI/ISO
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: ON
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

B–8 SQL Standards

The session variables DIALECT, DATE_FORMAT, QUOTING_RULES, and
KEYWORD_RULES can also return the string ’SQL99’.

For example:

SQL> declare :a, :b, :c, :d char(10);
SQL> get environment (session)
cont> :a = DIALECT,
cont> :b = DATE_FORMAT,
cont> :c = QUOTING_RULES,
cont> :d = KEYWORD_RULES;
SQL> print :a, :b, :c, :d;
A B C D
SQL99 SQL99 SQL99 SQL99

SQL Standards B–9

C
The SQL Communications Area (SQLCA) and

the Message Vector

The SQLCA and message vector are two separate host structures that SQL
declares when it precompiles an INCLUDE SQLCA statement.

Both the SQLCA and the message vector provide ways of handling errors:

• The SQLCA is a collection of parameters that SQL uses to provide
information about the execution of SQL statements to application
programs. The SQLCODE parameter in the SQLCA shows if a statement
was successful and, for some errors, the particular error when a statement
is not successful.

To illustrate how the SQLCA works in applications, interactive SQL
displays its contents when you issue the SHOW SQLCA statement.

• The message vector is also a collection of parameters that SQL updates
after it executes a statement. It lets programs check if a statement was
successful, but provides more detail than the SQLCA about the type of
error if a statement is not successful. The message vector, for example,
provides a way to access any follow-on messages in addition to those
containing the facility code RDB or SQL.

You can use the following steps to examine the message vector:

Assign any value to the logical name SQL$KEEP_PREP_FILES.

Precompile any program that contains the line ‘‘EXEC SQL INCLUDE
SQLCA’’. (You can use the programs in the sample directory.)

Examine the generated host language program.

SQL updates the contents of the SQLCA and the message vector after
completion of every executable SQL statement (nonexecutable statements are
the DECLARE, WHENEVER, and INCLUDE statements).

The SQL Communications Area (SQLCA) and the Message Vector C–1

You do not have to use the INCLUDE SQLCA statement in programs.
However, if you do not, you must explicitly declare the SQLCODE parameter
to receive values from SQL. SQLCODE is explicitly declared as an unscaled,
signed longword integer.

SQLCODE is a deprecated feature of the ANSI/ISO SQL standard and is
replaced by SQLSTATE. To comply with the ANSI/ISO SQL standard, you
should explicitly declare either SQLCODE or, preferably, SQLSTATE instead
of using the INCLUDE SQLCA statement. SQLCA (and the INCLUDE
SQLCA statement) is not part of the ANSI/ISO SQL standard. If you declare
SQLCODE or SQLSTATE but use the INCLUDE SQLCA statement, SQL uses
the SQLCA.

Programs that do not use the INCLUDE SQLCA statement will not have the
message vector declared by the precompiler. Such programs must explicitly
declare the message vector if they:

• Use the RDB$LU_STATUS field of the message vector in their error
checking

• Use system calls such as SYS$PUTMSG

The message vector is not part of the ANSI/ISO SQL standard.

When the SQLCA structure is explicitly declared by a program, SQL does
not update the SQLERRD fields. If you want the SQLERRD fields updated,
include the SQLCA definitions in the program using the EXEC SQL INCLUDE
SQLCA statement.

Section C.1 and Section C.2 describe the SQLCA and the message vector
in more detail. Section C.3 shows the declarations SQL makes for them in
different host language programs.

C.1 The SQLCA
The only fields of interest in the SQLCA are the SQLCODE field and the
second through sixth elements of the SQLERRD array.

Example C–1 shows the interactive SQL display for the SQLCA after the
‘‘attempt to fetch past end of stream’’ error.

C–2 The SQL Communications Area (SQLCA) and the Message Vector

Example C–1 Fields in the SQLCA

SQL> SHOW SQLCA
SQLCA:

SQLCAID: SQLCA SQLCABC: 128
SQLCODE: 100
SQLERRD: [0]: 0

[1]: 0
[2]: 0
[3]: 0
[4]: 0
[5]: 0

SQLWARN0: 0 SQLWARN1: 0 SQLWARN2: 0
SQLWARN3: 0 SQLWARN4: 0 SQLWARN5: 0
SQLWARN6: 0 SQLWARN7: 0
SQLSTATE: 02000

SQLSTATE is not part of the SQLCA, although it appears in the display.

The remainder of this section describes the fields of the SQLCA.

Fields of the SQLCA
SQLCAID
An 8-character field whose value is always the character string SQLCA. It is
provided for compatibility with DB2 databases. The FORTRAN SQLCA does
not include this field.

SQLCABC
An integer field whose value is always the length, in bytes, of the SQLCA. It is
provided for compatibility with DB2 databases. The value is always 128. The
FORTRAN SQLCA does not include this field.

SQLCODE
An integer field whose value indicates the error status returned by the most
recently executed SQL statement. A positive value other than 100 indicates a
warning, a negative value indicates an error, and a zero indicates successful
execution.

Table C–1 shows the possible numeric and literal values that SQL returns to
the SQLCODE field and explains the meaning of the values.

The SQL Communications Area (SQLCA) and the Message Vector C–3

Table C–1 Values Returned to the SQLCODE Field

Numeric
Value Literal Value Meaning

Success Status Code

0 SQLCODE_SUCCESS Statement completed successfully.

Warning Status Codes

100 SQLCODE_EOS SELECT statement or cursor came to the end
of stream.

1003 SQLCODE_ELIM_NULL1 Null value was eliminated in a set function.

1004 SQLCODE_TRUN_RTRV1 String truncated during assignment. This
occurs only during data retrieval.

Error Status Codes

–1 SQLCODE_RDBERR Oracle Rdb returned an error. The value
of –1 is a general error SQLCODE value
returned by any error not corresponding to
the other values in this table. Use sql_signal
or sql_get_error_text to return a meaningful
error.

–304 SQLCODE_OUTOFRAN Value is out of range for a host variable.

–305 SQLCODE_NULLNOIND Tried to store a null value into a host
language variable with no indicator variable.

–306 SQLCODE_STR_DAT_
TRUNC1

String data, right truncation.

–307 SQLCODE_INV_DATETIME Date-time format is invalid.

–501 SQLCODE_CURNOTOPE Cursor is not open.

–502 SQLCODE_CURALROPE Cursor is already open.

–507 SQLCODE_UDCURNOPE Cursor in an UPDATE or DELETE operation
is not opened.

–508 SQLCODE_UDCURNPOS Cursor in an UPDATE or DELETE operation
is not positioned on a row.

–509 SQLCODE_UDCURDEL Cursor in an UPDATE or DELETE operation
is positioned on a deleted row.

1Only the SQL92 and SQL99 dialects return this value.

(continued on next page)

C–4 The SQL Communications Area (SQLCA) and the Message Vector

Table C–1 (Cont.) Values Returned to the SQLCODE Field

Numeric
Value Literal Value Meaning

Error Status Codes

–803 SQLCODE_NO_DUP Updating would cause duplication on a
unique index.

–811 SQLCODE_SELMORVAL The result of a singleton select returned more
than one value.

–817 SQLCODE_ROTXN Attempt to update from a read-only
transaction.

–913 SQLCODE_DEADLOCK Request failed due to resource deadlock.

–1001 SQLCODE_INTEG_FAIL Constraint failed.

–1002 SQLCODE_NOT_VALID Valid-if failed.

–1003 SQLCODE_LOCK_
CONFLICT

NO WAIT request failed because resource was
locked.

–1004 SQLCODE_BAD_TXN_
STATE

Invalid transaction state–the transaction
already started.

–1005 SQLCODE_NO_TXN No transaction active.

–1006 SQLCODE_BAD_VERSION Version of the underlying system does not
support a feature that this query uses.

–1007 SQLCODE_TRIG_ERROR Trigger forced an error.

–1008 SQLCODE_NOIMPTXN No implicit distributed transaction
outstanding.

–1009 SQLCODE_DISTIDERR Distributed transaction ID error.

–1010 SQLCODE_BAD_CTX_VER Version field in the context structure is
defined incorrectly.

–1011 SQLCODE_BAD_CTX_
TYPE

Type field in the context structure is defined
incorrectly.

–1012 SQLCODE_BAD_CTX_LEN Length field in the context structure is
defined incorrectly.

–1013 SQLCODE_BASROWDEL Row that contains the list has been deleted.

–1014 SQLCODE_DIFFDEFINV Invoker of the module is not the same as the
definer (the user who compiled the module).

–1015 SQLCODE_STMTNOTPRE Dynamic statement is not prepared.

–1016 SQLCODE_NOSUCHCONN Connection does not exist.

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C–5

Table C–1 (Cont.) Values Returned to the SQLCODE Field

Numeric
Value Literal Value Meaning

Error Status Codes

–1017 SQLCODE_CONNAMEXI Connection name already exists.

–1018 SQLCODE_DBENVSYNERR Database environment specification contains
a syntax error.

–1019 SQLCODE_DBSPECSYNERR Database specification contains a syntax
error.

–1020 SQLCODE_ATTACHERR Error attaching to the database.

–1021 SQLCODE_NOSUCHALIAS Alias is not known.

–1022 SQLCODE_ALIASINUSE Alias is already declared.

–1023 SQLCODE_COLEXISTS Column already exists in the table.

–1024 SQLCODE_COLNOTDEF Column not defined in the table.

–1025 SQLCODE_TBLEXISTS Table already exists in the database or
schema.

–1026 SQLCODE_DOMEXISTS Domain already exists in the database or
schema.

–1027 SQLCODE_DOMNOTDEF Domain is not defined in the database or
schema.

–1028 SQLCODE_NO_PRIV No privilege for attempted operation.

–1029 SQLCODE_BAD_LENGTH Negative length specified for a column.

–1030 SQLCODE_BAD_SCALE Negative scale specified for a column.

–1031 SQLCODE_RO_TABLE Attempt to update a read-only table.

–1032 SQLCODE_OBSMETADATA Metadata no longer exists.

–1033 SQLCODE_UNRES_REL Table is not reserved in the transaction.

–1034 SQLCODE_CASENOTFND Case not found; WHEN not specified.

–1035 SQLCODE_CHKOPT_VIOL Integer failure with check option.

–1036 SQLCODE_UNTERM_C_
STR

Unterminated C string.

–1037 SQLCODE_INDIC_
OVFLOW

Indicator overflow.

–1038 SQLCODE_INV_PARAM_
VAL

Invalid parameter value.

(continued on next page)

C–6 The SQL Communications Area (SQLCA) and the Message Vector

Table C–1 (Cont.) Values Returned to the SQLCODE Field

Numeric
Value Literal Value Meaning

Error Status Codes

–1039 SQLCODE_NULL_ELIMIN Null eliminated in the set function.

–1040 SQLCODE_INV_ESC_SEQ Invalid escape sequence.

–1041 SQLCODE_RELNOTDEF Table not defined in the database or schema.

Programs can use the literal values to check for success, the end of record
stream warnings, or specific errors. Your program can check for particular
error codes and execute different sets of error-handling statements depending
upon the error code returned. However, because the values in Table C–1 do not
reflect all the possible errors or warnings, your program should check for any
negative value.

SQL inserts the RDB message vector (see Section C.2) along with the SQLCA
structure when it executes an SQL statement.

Also, string truncation conditions are only reported when the dialect is set to
SQL92 or SQL99 prior to a database attach in interactive SQL or when your
application is compiled. For example:

SQL> SET DIALECT ’SQL99’;
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> DECLARE :ln CHAR(10);
SQL> SELECT last_name INTO :ln FROM employees WHERE employee_id = ’00164’;
%RDB-I-TRUN_RTRV, string truncated during assignment to a variable or parameter
SQL> SHOW SQLCA
SQLCA:

SQLCAID: SQLCA SQLCABC: 128
SQLCODE: 1004
SQLERRD: [0]: 0

[1]: 0
[2]: 1
[3]: 0
[4]: 0
[5]: 0

SQLWARN0: 0 SQLWARN1: 0 SQLWARN2: 0
SQLWARN3: 0 SQLWARN4: 0 SQLWARN5: 0
SQLWARN6: 0 SQLWARN7: 0
SQLSTATE: 01004

%RDB-I-TRUN_RTRV, string truncated during assignment to a variable or parameter

The SQL Communications Area (SQLCA) and the Message Vector C–7

For each language, SQL provides a file that contains the declarations of all the
error literals shown in Table C–1. You can include this file in precompiled SQL
and module language programs.

Table C–2 shows how to include this file in your program.

Table C–2 Including the Error Literals File in Programs

Precompiled or Module
Language Declaration

Ada with SQL_SQLCODE;
with SQL_SQLDA;
with SQL_SQLDA2; 1

BASIC %INCLUDE "sys$library:sql_literals.bas"

C #include "sys$library:sql_literals.h"

COBOL COPY ’SYS$LIBRARY:SQL_LITERALS’

FORTRAN INCLUDE ’SYS$LIBRARY:SQL_LITERALS.FOR’

Pascal %include ’sys$library:sql_literals.pas’

PL/I %INCLUDE ’sys$library:sql_literals.pli’;

1You must compile the Ada package, SYS$LIBRARY:SQL_LITERALS.ADA, before you use it in a
program. Only declare SQL_SQLDA and SQL_SQLDA2 when you use dynamic SQL.

In addition to the error literals, the file contains declarations for the SQLTYPE
field in the SQLDA. See Appendix D for information about the SQLTYPE field.

Example C–2 shows how to include the error literals file in a COBOL program.

C–8 The SQL Communications Area (SQLCA) and the Message Vector

Example C–2 Including Error Literals in a COBOL Program

IDENTIFICATION DIVISION.
PROGRAM-ID. LITERAL-TESTS.
*
* This program tests the use of symbolic literals for SQLCODE and
* SQLDA_DATATYPE. All the literal definitions are part of a file that
* is used with the COPY command.
*
DATA DIVISION.
WORKING-STORAGE SECTION.
COPY SQL_LITERALS.
EXEC SQL INCLUDE SQLCA END-EXEC.
01 CDE PIC X(5).
01 DISP_SQLCODE PIC S9(9) DISPLAY SIGN LEADING SEPARATE.
01 GETERRVARS.

02 error-buffer-len PIC S9(9) COMP VALUE 132.
02 error-msg-len PIC S9(9) COMP.
02 error-buffer PIC X(132).

exec sql whenever sqlerror continue end-exec.

PROCEDURE DIVISION.

*
* test for sqlcode -501 SQLCODE_CURNOTOPE
*

exec sql declare A cursor for
select college_code from colleges
where college_name like ’D%’ order by 1

end-exec.
exec sql fetch A into :CDE end-exec.
if sqlcode = SQLCODE_CURNOTOPE
then

MOVE sqlcode to DISP_SQLCODE
DISPLAY "SQLCODE after attempt to fetch is ", DISP_SQLCODE

CALL "sql_get_error_text" USING BY REFERENCE error-buffer,
BY VALUE error-buffer-len,
BY REFERENCE error-msg-len.

DISPLAY BUFFER(1:error-msg-len)
end-if.
exec sql close A end-exec.

*

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C–9

Example C–2 (Cont.) Including Error Literals in a COBOL Program

* test for SQLCODE 0 SQLCODE_SUCCESS
*

exec sql
insert into employees (employee_id, last_name, sex)

values (’00999’,’Jones’,’M’)
end-exec.
if sqlcode = SQLCODE_SUCCESS
then

MOVE sqlcode to DISP_SQLCODE
DISPLAY "SQLCODE after insert is ", DISP_SQLCODE

CALL "sql_get_error_text" USING BY REFERENCE error-buffer,
BY VALUE error-buffer-len,
BY REFERENCE error-msg-len.

DISPLAY BUFFER(1:error-msg-len)
end-if.

EXEC SQL ROLLBACK END-EXEC.
STOP RUN.

SQLERRM
The SQLERRM is a structure containing two fields: a word field called
SQLERRML and a 70-character field called SQLERRMC. It is provided only
for compatibility with DB2 software.

SQLERRD[x]
A zero-based array of six integers. The only elements of the array that SQL
uses are the second through sixth elements (SQLERRD[1], SQLERRD[2],
SQLERRD[3], SQLERRD[4] and SQLERRD[5] in the display from SHOW
SQLCA).

When you use dynamic SQL, SQL puts a value in the second element
(SQLERRD[1]) after SQL executes the DESCRIBE statement. The values
represent the following:

• 0: The statement is any SQL statement except a SELECT statement or
CALL statement.

• 1: The statement is a SELECT statement.

• 2: The statement is a CALL statement.

SQL puts a value in the third element (SQLERRD[2]) after successful execution
of the following statements:

• INSERT: The number of rows stored by the statement.

• UPDATE: The number of rows modified by the statement.

C–10 The SQL Communications Area (SQLCA) and the Message Vector

• DELETE: The number of rows deleted by the statement.

• FETCH: The number of the row on which the cursor is currently positioned.

• SELECT: The number of rows in the result table formed by the SELECT
statement. (Note: The SQLERRD[2] field is not updated for dynamic
SELECT statements.)

SQL puts the following values in the third and fourth elements after successful
execution of an OPEN statement for a table cursor:

• SQLERRD[2]: Estimated result table cardinality

• SQLERRD[3]: Estimated I/O operations

You must recompile application modules so that the new values in SQLERRD[2]
and SQLERRD[3] can be returned.

SQL puts the following values in the second, fourth, fifth, and sixth elements
after successful execution of an OPEN statement that opens a list cursor:

• SQLERRD[1]: Longword length of the longest actual segment

• SQLERRD[3]: Longword number of segments

• SQLERRD[4,5]: Two contiguous longwords contained a quadword number
of total bytes

SQL puts no meaningful data in the sixth element of the SQLERRD array
after successful execution of a FETCH statement.

SQLERRD[1] on a LIST cursor fetch returns the segment size in octets.

After error statements or any other cases, the value of SQLERRD is undefined.

SQLWARNx
A series of 1-character fields, numbered from 0 through 7, that SQL does not
use. It is provided for compatibility with DB2 software.

C.2 The Message Vector
When SQL precompiles a program, it declares a host structure for the
message vector immediately following the SQLCA. It calls the structure
RDB$MESSAGE_VECTOR.

Programs most often use the message vector in two ways:

• By checking the message vector field RDB$LU_STATUS for the return
status value from the last SQL statement. The program can either check
the low-order bit of that field (successful if set) or use the entire field to
determine the specific return status value.

The SQL Communications Area (SQLCA) and the Message Vector C–11

• By using the message vector in the sql_signal and sql_get_error_text
routines:

The sql_signal routine uses the message vector to signal the error to
the OpenVMS condition handler.

The sql_get_error_text routine puts the message text corresponding to
the return status value in the message vector into a buffer the program
specifies.

For more information about sql_signal and sql_get_error_text, see Chapter
5.

Figure C–1 summarizes the fields of the message vector.

Figure C–1 Fields of the Message Vector

RDB$MESSAGE_VECTOR

RDB$LU_NUM_ARGUMENTS Number of arguments in the vector

RDB$LU_STATUS Number corresponding to return
status for the condition

RDB$ALU_ARGUMENTS An array containing information about FAO
arguments and follow-on messages related to
the primary message, if any

RDB$LU_ARGUMENTS [1] Number of FAO arguments to primary message

. Pointer to FAO arguments, if any

. Return status for follow-on message, if any

. Number of FAO arguments, for follow-on
message, if any

C.3 Declarations of the SQLCA and the Message Vector
This section shows the SQLCA and message vector declarations for the host
languages supported by the SQL precompiler and module processor.

Example C–3 shows the Ada SQLCA and message vector declaration.

C–12 The SQL Communications Area (SQLCA) and the Message Vector

Example C–3 Ada SQLCA and Message Vector Declaration

Package SQL_ADA_CURSOR is
TYPE SQL_TYPE_1 IS NEW STRING(1..6);

type SQLERRM_REC is
record

SQLERRML : short_integer;
SQLERRMC : string (1..70);

end record;

type SQLERRD_ARRAY is array (1..6) of integer;

type SQLCA is
record

SQLCAID : string (1..8) := "SQLCA ";
SQLABC : integer := 128;
SQLCODE : integer;
SQLERRM : sqlerrm_rec;
SQLERRD : sqlerrd_array;
SQLWARN0 : character := ’ ’;
SQLWARN1 : character := ’ ’;
SQLWARN2 : character := ’ ’;
SQLWARN3 : character := ’ ’;
SQLWARN4 : character := ’ ’;
SQLWARN5 : character := ’ ’;
SQLWARN6 : character := ’ ’;
SQLWARN7 : character := ’ ’;
SQLEXT : string (1..8) := " ";

end record;

RDB_MESSAGE_VECTOR : SYSTEM.UNSIGNED_LONGWORD_ARRAY(1..20);
pragma PSECT_OBJECT(RDB_MESSAGE_VECTOR,"RDB$MESSAGE_VECTOR");

Example C–4 shows the BASIC SQLCA and message vector declaration.

Example C–4 BASIC SQLCA and Message Vector Declaration

RECORD SQLCA_REC
string SQLCAID = 8
long SQLCABC
long SQLCODE
GROUP SQLERRM
word SQLERRML
string SQLERRMC = 70

END GROUP SQLERRM
long SQLERRD(5)
string SQLWARN0 = 1
string SQLWARN1 = 1

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C–13

Example C–4 (Cont.) BASIC SQLCA and Message Vector Declaration
string SQLWARN2 = 1
string SQLWARN3 = 1
string SQLWARN4 = 1
string SQLWARN5 = 1
string SQLWARN6 = 1
string SQLWARN7 = 1
string SQLEXT = 8

END RECORD SQLCA_REC

DECLARE SQLCA_REC SQLCA

RECORD RDB$MESSAGE_VECTOR_REC
long RDB$LU_NUM_ARGUMENTS
long RDB$LU_STATUS
GROUP RDB$ALU_ARGUMENTS(17) ! Arrays in BASIC are always relative

long RDB$LU_ARGUMENT ! to 0. There are 18 array elements.
END GROUP RDB$ALU_ARGUMENTS

END RECORD RDB$MESSAGE_VECTOR_REC

COMMON (RDB$MESSAGE_VECTOR) &
RDB$MESSAGE_VECTOR_REC RDB$MESSAGE_VECTOR

C–14 The SQL Communications Area (SQLCA) and the Message Vector

Example C–5 shows the C SQLCA and message vector declaration.

Example C–5 C SQLCA and Message Vector Declaration

struct
{

char SQLCAID[8];
int SQLCABC;
int SQLCODE;
struct {

short SQLERRML;
char SQLERRMC[70];

} SQLERRM;
int SQLERRD[6];
struct {

char SQLWARN0[1];
char SQLWARN1[1];
char SQLWARN2[1];
char SQLWARN3[1];
char SQLWARN4[1];
char SQLWARN5[1];
char SQLWARN6[1];
char SQLWARN7[1];

} SQLWARN;
char SQLEXT[8];

} SQLCA = { {’S’,’Q’,’L’,’C’,’A’,’ ’,’ ’,’ ’},
128, 0,
{0, ""},
{0,0,0,0,0,0},
{"", "", "", "", "", "", "", ""},
"" };

extern
struct Rdb$MESSAGE_VECTOR_str
RDB$MESSAGE_VECTOR;

The SQL Communications Area (SQLCA) and the Message Vector C–15

Example C–6 shows the COBOL SQLCA and message vector declaration.

Example C–6 COBOL SQLCA and Message Vector Declaration

01 SQLCA GLOBAL.
02 SQLCAID PIC X(8) VALUE IS "SQLCA ".
02 SQLCABC PIC S9(9) COMP VALUE IS 128.
02 SQLCODE PIC S9(9) COMP.
02 SQLERRM.

03 SQLERRML PIC S9(4) COMP VALUE IS 0.
03 SQLERRMC PIC X(70).

02 SQLERRD PIC S9(9) COMP OCCURS 6 TIMES.
02 SQLWARN.

03 SQLWARN0 PIC X.
03 SQLWARN1 PIC X.
03 SQLWARN2 PIC X.
03 SQLWARN3 PIC X.
03 SQLWARN4 PIC X.
03 SQLWARN5 PIC X.
03 SQLWARN6 PIC X.
03 SQLWARN7 PIC X.

02 SQLEXT PIC X(8).

01 Rdb$MESSAGE_VECTOR EXTERNAL GLOBAL.
03 Rdb$LU_NUM_ARGUMENTS PIC S9(9) COMP.
03 Rdb$LU_STATUS PIC S9(9) COMP.
03 Rdb$ALU_ARGUMENTS OCCURS 18 TIMES.

05 Rdb$LU_ARGUMENTS PIC S9(9) COMP.

Example C–7 shows the FORTRAN SQLCA and message vector declaration.

Example C–7 FORTRAN SQLCA and Message Vector Declaration

CHARACTER*1 SQLCA (128)
INTEGER*4 SQLCOD
EQUIVALENCE (SQLCOD, SQLCA(13))
INTEGER*2 SQLTXL
EQUIVALENCE (SQLTXL, SQLCA(17))
CHARACTER*70 SQLTXT
EQUIVALENCE (SQLTXT, SQLCA(19))
INTEGER*4 SQLERR(1:6)
EQUIVALENCE (SQLERR, SQLCA(89))
CHARACTER*1 SQLWRN(0:7)
EQUIVALENCE (SQLWRN, SQLCA(113))

(continued on next page)

C–16 The SQL Communications Area (SQLCA) and the Message Vector

Example C–7 (Cont.) FORTRAN SQLCA and Message Vector Declaration

INTEGER*4 Rdb$MESSAGE_VECTOR(20), Rdb$LU_NUM_ARGUMENTS
INTEGER*4 RdbLU_STATUS, RdbALU_ARGUMENTS(18)
COMMON /Rdb$MESSAGE_VECTOR/ Rdb$MESSAGE_VECTOR
EQUIVALENCE (Rdb$MESSAGE_VECTOR(1),Rdb$LU_NUM_ARGUMENTS)
EQUIVALENCE (Rdb$MESSAGE_VECTOR(2), Rdb$LU_STATUS)
EQUIVALENCE (Rdb$MESSAGE_VECTOR(3), Rdb$ALU_ARGUMENTS)

Example C–8 shows the Pascal SQLCA and message vector declaration.

Example C–8 Pascal SQLCA and Message Vector Declaration

TYPE
RDB$LU_ARGUMENTS = [HIDDEN] INTEGER;
RDB$ALU_ARGUMENTS_ARRAY = [HIDDEN] ARRAY [1..18] OF RDB$LU_ARGUMENTS;
RDB$MESSAGE_VECTOR_REC = [HIDDEN] RECORD

RDB$LU_NUM_ARGUMENTS : INTEGER;
RDB$LU_STATUS : INTEGER;
RDB$ALU_ARGUMENTS : RDB$ALU_ARGUMENTS_ARRAY;

END;
VAR
RDB$MESSAGE_VECTOR : [HIDDEN, common(rdb$message_vector)]
RDB$MESSAGE_VECTOR_REC;
TYPE
SQL$SQLCA_REC = [HIDDEN] RECORD

SQLCAID : PACKED ARRAY [1..8] OF CHAR;
SQLCABC : INTEGER;
SQLCODE : INTEGER;
SQLERRM : RECORD

SQLERRML : SQL$SMALLINT;
SQLERRMC : PACKED ARRAY [1..70] OF CHAR;

END;

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C–17

Example C–8 (Cont.) Pascal SQLCA and Message Vector Declaration

SQLERRD : ARRAY [1..6] OF INTEGER;
SQLWARN : RECORD

SQLWARN0 : CHAR;
SQLWARN1 : CHAR;
SQLWARN2 : CHAR;
SQLWARN3 : CHAR;
SQLWARN4 : CHAR;
SQLWARN5 : CHAR;
SQLWARN6 : CHAR;
SQLWARN7 : CHAR;

END;
SQLEXT : PACKED ARRAY [1..8] OF CHAR;

END;
VAR
RDB$DBHANDLE : [HIDDEN] INTEGER;
SQLCA : [HIDDEN] SQL$SQLCA_REC;

Example C–9 shows the PL/I SQLCA and message vector declaration.

Example C–9 PL/I SQLCA and Message Vector Declaration

DCL 1 SQLCA STATIC ,
2 SQLCAID character(8) INITIAL(’SQLCA ’),
2 SQLCABC fixed binary(31) INITIAL(128),
2 SQLCODE fixed binary(31),
2 SQLERRM ,
3 SQLERRML fixed binary(15) INITIAL(0),
3 SQLERRMC character(70),
2 SQLERRD (1:6) fixed binary(31),
2 SQLWARN ,
3 SQLWARN0 character(1),
3 SQLWARN1 character(1),
3 SQLWARN2 character(1),
3 SQLWARN3 character(1),
3 SQLWARN4 character(1),
3 SQLWARN5 character(1),
3 SQLWARN6 character(1),
3 SQLWARN7 character(1),
2 SQLEXT character(8);

(continued on next page)

C–18 The SQL Communications Area (SQLCA) and the Message Vector

Example C–9 (Cont.) PL/I SQLCA and Message Vector Declaration
DCL 1 Rdb$MESSAGE_VECTOR EXTERNAL,

2 Rdb$LU_NUM_ARGUMENTS FIXED BINARY(31),
2 Rdb$LU_STATUS FIXED BINARY(31),
2 Rdb$ALU_ARGUMENTS (18),
3 Rdb$LU_ARGUMENTS FIXED BINARY (31);

C.4 Using SQLCA Include Files
Use of the SQLCA include files such as the SQL_SQLCA.H file for C, are
intended for use with the host language files only. That is, only *.C should be
included in that file. Precompiled files (*.SC files) should use the EXEC SQL
INCLUDE SQLCA embedded SQL command in the declaration section of the
module. In this way the precompiler can properly define the structure to be
used by the related SQL generated code.

Remember that the SQLCA is always scoped at the module level, unlike the
SQLCODE or SQLSTATE variables which may be routine specific.

C.5 SQLSTATE
SQL defines a set of status parameters that can be part of the parameter
list for a procedure definition in a nonstored module. They are SQLSTATE,
SQLCODE, and SQLCA. An SQL procedure is required to contain at least one
of these status parameters in its parameter list. All status parameters are
implicitly output parameters.

The purpose of these status parameters is to return the status of each SQL
statement that is executed. Each status parameter gives information that
allows you to determine whether the statement completed execution or an
exception has occurred. These status parameters differ in the amount of
diagnostic information they supply, when an exception occurs as follows:

• SQLCODE—This is the original SQL error handling mechanism. It is an
integer value. SQLCODE differentiates among errors (negative numbers),
warnings (positive numbers), successful completion (0), and a special code
of 100, which means no data. SQLCODE is a deprecated feature of the
ANSI/ISO SQL standard.

• SQLCA—This is an extension of the SQLCODE error handling mechanism.
It contains other context information that supplements the SQLCODE
value. SQLCA is not part of the ANSI/ISO SQL standard. However, many
databases such as DB2 and ORACLE RDBMS have defined proprietary
semantics and syntax to implement it.

The SQL Communications Area (SQLCA) and the Message Vector C–19

• SQLSTATE—This is the error handling mechanism for the ANSI/ISO SQL
standard. The SQLSTATE value is a character string that is associated
with diagnostic information.

This section covers the following SQLSTATE topics:

• Definition of the SQLSTATE status parameter

• Use of the SQLSTATE status parameter

C.5.1 Definition of the SQLSTATE Status Parameter
The value returned in an SQLSTATE status parameter is a string of five
characters. It comprises a two-character class value followed by a three-
character subclass value. Each class value corresponds to an execution
condition such as success, connection exception, or data exception. Each
subclass corresponds to a subset of its execution condition. For example,
connection exceptions are differentiated by ‘‘connection name in use’’,
‘‘connection not open’’, and ‘‘connection failure’’ categories. A subclass of
000 means there is no subcondition.

Table C–3 shows the SQLSTATE values that SQL has defined with its
corresponding execution condition. The SQLSTATE classes beginning with
either the characters R or S are Oracle Rdb-specific SQLSTATE values.

Table C–3 SQLSTATE Status Parameter Values—Sorted by SQLSTATE Class
and Subclass

Class
/Subclass Condition Subcondition

00000 Successful completion No subcondition

01000 Warning No subcondition

01003 Null value eliminated in
aggregate function

01004 String data, right
truncation

02000 No data No subcondition

08002 Connection exception Connection name in use

08003 Connection does not exist

08006 Connection failure

(continued on next page)

C–20 The SQL Communications Area (SQLCA) and the Message Vector

Table C–3 (Cont.) SQLSTATE Status Parameter Values—Sorted by SQLSTATE
Class and Subclass

Class
/Subclass Condition Subcondition

09000 Trigger action exception No subcondition

20000 Case not found for case statement No subcondition

21000 Singleton select returned more than one value No subcondition

22001 Data exception String data, right
truncation

22002 Null value, no indicator
parameter

22003 Numeric value out of
range

22004 Null value not allowed

22005 Error in assignment

22006 Invalid fetch orientation

22007 Invalid date-time format

22008 Datetime field overflow

22009 Invalid time displacement
value

22010 Invalid indicator
parameter value

22011 Substring error

22012 Division by zero

22015 Datetime field overflow

22018 Invalid character value
for cast

22019 Invalid escape character

22020 Invalid limit value

22021 Character not in
repertoire

22022 Indicator overflow

22023 Invalid parameter value

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C–21

Table C–3 (Cont.) SQLSTATE Status Parameter Values—Sorted by SQLSTATE
Class and Subclass

Class
/Subclass Condition Subcondition

22024 C string not terminated

22025 Invalid escape sequence

22027 Trim error

2201B Invalid regular
expression

2200F Zero length character
string

23000 Integrity constraint violation No subcondition

24000 Invalid cursor state No subcondition

25000 Invalid transaction state No subcondition

25001 Active SQL transaction

25006 Read-only SQL
transaction

26000 Invalid SQL statement identifier No subcondition

2F000 SQL routine exception No subcondition

2F005 Function did not execute
return statement

30000 Invalid SQL statement No subcondition

31000 Invalid target specification value No subcondition

32000 Invalid constraint mode state No subcondition

33000 Invalid SQL descriptor name No subcondition

34000 Invalid cursor name No subcondition

35000 Invalid condition number No subcondition

37000 Database specification syntax error No subcondition

38000 External procedure exception No subcondition

39000 External procedure call exception No subcondition

39001 Invalid SQLSTATE
returned

3C000 Ambiguous cursor name No subcondition

(continued on next page)

C–22 The SQL Communications Area (SQLCA) and the Message Vector

Table C–3 (Cont.) SQLSTATE Status Parameter Values—Sorted by SQLSTATE
Class and Subclass

Class
/Subclass Condition Subcondition

3E000 Invalid catalog name No subcondition

3F000 Invalid schema name No subcondition

42000 Syntax error or access rule violation No subcondition

44000 With check option violation No subcondition

R10011 Lock error exception Deadlock encountered

R10021 Lock conflict

R20001 Duplicate value not allowed in index No subcondition

R30002 Trigger forced an ERROR statement No subcondition

R40001 Distributed transaction identification error No subcondition

R50001 Attempted to update a read-only table No subcondition

R60001 Metadata no longer available No subcondition

R70001 Table in request not reserved in transaction No subcondition

RR0001 Oracle Rdb returned an error No subcondition

S00001 No implicit transaction No subcondition

S10011 Context exception Bad version in context
structure

S10021 Bad type in context
structure

S10031 Bad length in context
structure

S20001 Row containing list deleted No subcondition

S30001 Invoker was not the definer No subcondition

S40011 Alias exception Alias unknown

S40021 Alias already declared

S70001 Base system does not support feature being
used

No subcondition

1Oracle Rdb specific SQLSTATE code
2Obsolete. Use SQLSTATE 09000 instead

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C–23

Table C–3 (Cont.) SQLSTATE Status Parameter Values—Sorted by SQLSTATE
Class and Subclass

Class
/Subclass Condition Subcondition

S60003 Case not found; WHEN or ELSE not specified No subcondition

S70001 Bad SQL version No subcondition

S50011 Negative length and scale for column Negative length specified
for column

S50021 Negative scale specified
for column

1Oracle Rdb specific SQLSTATE code
3Obsolete. Use SQLSTATE 20000 instead

C.5.2 Use of the SQLSTATE Status Parameter
Table C–3 shows the SQLSTATE classes 00, 01, and 02 as completion
conditions of success, warning, and no data respectively. All other classes
define exception conditions.

When using embedded SQL, the embedded exception declaration defines the
following categories of exceptions:

• NOT FOUND: SQLSTATE class = 02

• SQLWARNING: SQLSTATE class = 01

• SQLEXCEPTION: SQLSTATE class > 02

• SQLERROR: SQLEXCEPTION or SQLWARNING

Example C–10 shows how to declare SQLSTATE as a parameter in a C
program and how to evaluate the SQLSTATE value using the string compare
function. When you declare SQLSTATE in a C program, you must type
SQLSTATE in all uppercase characters.

C–24 The SQL Communications Area (SQLCA) and the Message Vector

Example C–10 Declaring SQLSTATE in a C Program

char SQLSTATE[6];
long SQLCODE;

main()
{

EXEC SQL SELECT T_INT INTO :c1 FROM FOUR_TYPES
WHERE T_DECIMAL = 4.1;

printf ("SQLCODE should be < 0; its value is %ld\n", SQLCODE);
printf ("SQLSTATE should be ’22002’; its value is %s\n", SQLSTATE);
if (SQLCODE >= 0 || strncmp (SQLSTATE, "22002", 5) != 0)
flag = 0;

}

You can use the GET DIAGNOSTICS statement to return the SQLSTATE
information to your program. For more information, see the GET
DIAGNOSTICS Statement.

Note that Oracle Rdb provides a set of include file for the value of SQLSTATE.
These file are located in SYS$LIBRARY with the following names:

Table C–4 Include Files for SQLSTATE

File Name Description

SQLSTATE.BAS BASIC include file

SQLSTATE.FOR Fortran include file

SQLSTATE.H C or C++ header file

SQLSTATE.LIB COBOL include file

SQLSTATE.PAS Pascal include file

SQLSTATE.SQL SQL declare file

In addition a special script (SQLSTATE_TABLE.SQL) is provided to create a
table (SQLSTATE_TABLE) in a database and populate it with the values and
symbolic names.

Oracle Corporation will periodically add to these definition files as new
SQLSTATE values are used by Oracle Rdb, or as required by the ANSI and
ISO SQL database standard.

The SQL Communications Area (SQLCA) and the Message Vector C–25

D
The SQL Dynamic Descriptor Areas (SQLDA

and SQLDA2)

An SQL Descriptor Area (SQLDA) is a collection of parameters used only in
dynamic SQL programs. SQL provides two descriptor areas: SQLDA and
SQLDA2. Sections D.6 through D.6.2 include information specific to the
SQLDA2.

Dynamic SQL lets programs accept or generate SQL statements at run time,
in contrast to SQL statements that are part of the source code for precompiled
programs or SQL module language procedures. Unlike precompiled SQL or
SQL module language statements, such dynamically executed SQL statements
are not necessarily part of a program’s source code, but can be generated while
the program is running. Dynamic SQL is useful when you cannot predict the
type of SQL statement your program will need to process.

To use an SQLDA, host languages must support pointer variables that provide
indirect access to storage by storing the address of data instead of directly
storing data in the variable. The languages supported by the SQL precompiler
that also support pointer variables are PL/I, C, BASIC, and Ada. Any other
language that supports pointer variables can use an SQLDA, but must call
SQL module procedures containing SQL statements instead of embedding the
SQL statements directly in source code.

D.1 Purpose of the SQLDA
The SQLDA provides information about dynamic SQL statements to the
program and information about memory allocated by the program to SQL.
Specifically, SQL and host language programs use the SQLDA for the following
purposes:

• SQL uses the SQLDA as a place to write information about parameter
markers and select list items in a prepared statement. SQL writes
information about the number and data types of input and output
parameter markers and select list items to the SQLDA when it processes
PREPARE . . . SELECT LIST INTO statements or DESCRIBE statements.

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–1

Parameter markers are question marks (?) that denote parameters in
the statement string of a PREPARE statement. SQL replaces parameter
markers with values in parameters or dynamic memory when it executes a
dynamic SQL statement.

The DESCRIBE statement writes information about select list items
in a prepared SELECT statement to the SQLDA so the host language
program can allocate storage (parameters or dynamic memory) for them.
The storage allocated by the program then receives values in rows of
the prepared SELECT statement’s result table in subsequent FETCH
statements.

An SQLDA at any particular time can contain information about either
input or output parameter markers or select list items, but not about
both:

SQL writes information about select list items to the SQLDA when it
executes DESCRIBE . . . SELECT LIST or PREPARE . . . SELECT
LIST statements.

SQL writes information about parameter markers to the SQLDA when
it executes DESCRIBE . . . MARKERS statements. If a prepared
statement has no parameter markers, a DESCRIBE . . . MARKERS
statement puts values in the SQLDA to indicate that there are no
parameter markers.

• The program uses the SQLDA as a place to read the information SQL
wrote to the SQLDA about any select list items, or input or output
parameter markers in the prepared statement:

After either a DESCRIBE . . . SELECT LIST or DESCRIBE . . .
MARKERS statement, the program reads the number and data type of
select list items or parameter markers.

The program uses that information to allocate storage (either by
declaring parameters or allocating dynamic memory) for values that
correspond to the parameter markers or select list items.

• The program uses the SQLDA as a place to write the addresses of the
storage it allocated for parameter markers and select list items.

• SQL uses the SQLDA as a place to read information about parameter
markers or select list items:

In OPEN statements, SQL reads the addresses of a prepared SELECT
statement’s parameter markers to set up a cursor for the program to
process.

D–2 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

In FETCH statements, SQL reads the addresses of a prepared SELECT
statement’s select list items so it can write the values of the row being
fetched to the storage allocated by the program.

In EXECUTE statements, SQL reads the addresses of parameter
markers of any prepared statement other than a SELECT statement.

The OPEN and FETCH statements used to read information from the
SQLDA are not themselves dynamic statements used in a PREPARE
statement, nor is a DECLARE CURSOR statement that declares the cursor
named in the OPEN and FETCH statements. Although these statements
use prepared statements, they are among the SQL statements that cannot
themselves be prepared statements. See the PREPARE Statement for a list
of statements that cannot be dynamically executed.

D.2 How SQL and Programs Use the SQLDA
The specific sequence of operations that uses the SQLDA depends on whether
a program can accept dynamically generated SELECT statements only, non-
SELECT statements only, or both. The following sequence describes in general
the steps a program follows in using the SQLDA. For specific examples, see the
chapter on using dynamic SQL in the Oracle Rdb Guide to SQL Programming
and the sample programs created during installation of Oracle Rdb in the
Samples directory.

1. The program uses the embedded SQL statement INCLUDE SQLDA to
automatically declare an SQLDA. In addition, the program must allocate
memory for the SQLDA and set the value of one of its fields, SQLN. The
value of SQLN specifies the maximum number of parameter markers or
select list items about which information can be stored in the SQLDA.

Programs can use more than one SQLDA but must explicitly declare
additional SQLDA structures with names other than SQLDA. Declaring
two SQLDAs can be useful for dynamic SQL programs that can accept both
SELECT and non-SELECT statements. One SQLDA stores information
about parameter markers and another stores information about select list
items. (An alternative to declaring multiple SQLDA structures in such
programs is to issue additional DESCRIBE . . . SELECT LIST statements
after the program finishes with parameter marker information in the
SQLDA.)

Declaration and allocation of SQLDAs need to be done only once. The
remaining steps repeat as many times as the program has dynamic SQL
statements to process.

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–3

2. SQL writes the number and data types of any select list items (for a
DESCRIBE . . . SELECT LIST statement) or parameter markers (for a
DESCRIBE . . . MARKERS statement) of a prepared statement into the
SQLDA. SQL puts the number of select list items or parameter markers in
the SQLD field of the SQLDA, and stores codes denoting their data types
in the SQLTYPE fields.

3. If the program needs to determine if a particular prepared statement
is a SELECT statement, it reads the value of the second element of the
SQLCA.SQLERRD array after a DESCRIBE . . . SELECT LIST statement.
If the value is one, the prepared statement is a SELECT statement and the
program needs to allocate storage for rows generated during subsequent
FETCH statements.

4. When you use parameter markers in SQL statements, you should not make
any assumptions about the data types of the parameters. SQL may convert
the parameter to a data type that is more appropriate to a particular
operation. For example, when you use a parameter marker as one value
expression in a LIKE predicate, SQL returns a data type of VARCHAR for
that parameter even though the other value expression has a data type of
CHAR. The STARTING WITH predicate and the CONTAINING predicate
treat parameter markers in the same way. You can override the VARCHAR
data type in such predicates by explicitly setting the SQLTYPE field of the
SQLDA to CHAR.

5. The program reads information about the number, data type, and length
of any select list items (after a DESCRIBE . . . SELECT LIST statement)
or parameter markers (after a DESCRIBE . . . MARKERS statement) from
the SQLDA. The program then allocates storage (parameters or dynamic
memory) for each of the select list items or parameters, and writes the
addresses for that storage to the SQLDA. The program puts the addresses
into the SQLDATA fields of the SQLDA.

If SQL uses a data type for the parameter marker or select list item that
is not supported by the programming language, the program must convert
the SQLTYPE and SQLLEN fields to an appropriate data type and length.
The program changes the values of SQLTYPE and SQLLEN that SQL
returns from the DESCRIBE statement to a data type and length that both
SQL and the host language support.

6. The program supplies values that will be substituted for parameter
markers and writes those values to the storage allocated for them.

D–4 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

7. SQL reads information about parameter markers from the SQLDA:

If the prepared statement is a prepared SELECT statement, SQL reads
the addresses of any parameter markers for that prepared SELECT
statement when it executes an OPEN statement that refers to the
SQLDA.

If the statement is any other prepared statement, SQL reads the
addresses of parameter markers for that statement when it executes an
EXECUTE statement that refers to the SQLDA.

SQL uses the addresses of parameter markers to retrieve the values in
storage (supplied by the program) and to substitute them for parameter
markers in the prepared statement.

8. Finally, for prepared SELECT statements only, SQL reads the addresses
of select list items when it executes a FETCH statement that refers to the
SQLDA. SQL uses the information to write the values from the row of the
result table to memory.

D.3 Declaring the SQLDA
Programs can declare the SQLDA in the following ways:

• By using the INCLUDE SQLDA statement embedded in Ada, C, or
PL/I programs to be precompiled. The INCLUDE SQLDA statement
automatically inserts a declaration of an SQLDA structure, called SQLDA,
in the program when it precompiles the program.

• In precompiled Ada programs, by specifying the SQLDA_ACCESS type
in the SQL definition package. Specifying SQLDA_ACCESS offers an
advantage over an embedded INCLUDE SQLDA statement because
you can use it in more than one declaration to declare multiple SQLDA
structures.

• In precompiled C programs and C host language programs, you can use the
sql_sqlda.h header file. The following example shows how to include the
file in a C program:

#include <sql_sqlda.h>

The sql_sqlda.h header file includes typedef statements for the SQLDA
structure defining the SQL_T_SQLDA (or the SQL_T_SQLDA2) data type.
In addition, it defines the SQL_T_SQLDA_FULL (or SQL_T_SQLDA2_
FULL) data type as a superset to the definition of the SQLDA structure.
The SQL_T_SQLDA_FULL data type is identical in layout to the SQL_T_
SQLDA data type except that it contains additional unions with additional
fields that SQL uses when describing CALL statements.

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–5

For additional information on declaring SQLDA structures, see the Oracle
Rdb Guide to SQL Programming.

• By explicitly declaring the SQLDA in programs written in host languages
that support pointer variables. Such host languages can then take
advantage of dynamic SQL even though the SQL precompiler does not
support them. Instead of embedding SQL statements directly in the host
language source code, languages unsupported by the precompiler must
call SQL module language procedures that contain SQL statements to use
dynamic SQL. See Chapter 3 for more information about the SQL module
language.

Programs that explicitly declare SQLDA structures (whether or not they
have precompiler support) supply a name for the SQLDA structure, which
can be SQLDA or any other valid name. Declaring two SQLDAs can be
useful for dynamic SQL programs that can accept both SELECT and
non-SELECT statements. One SQLDA stores information about parameter
markers and another stores information about select list items.

An SQLDA always includes four fields, and may sometimes include a fifth
field. The fifth field, SQLVAR, is a repeating field. For languages other than
C, it comprises five parameters that describe individual select list items
or parameter markers of a prepared statement. For C, it comprises six
parameters.

The following examples show declarations of the SQLDA for different host
languages. For PL/I, C, and Ada, the examples show the declaration SQL
inserts when it processes a program that contains the INCLUDE SQLDA
statement. For BASIC, the example shows the format a program should use
when it declares the SQLDA explicitly.

These sample declarations all use the name SQLDA as the name for the
SQLDA structure, but programs can use any valid name.

Example D–1 shows the declaration that SQL inserts when it processes a
program that contains the INCLUDE SQLDA statement.

D–6 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Example D–1 Declaration of the SQLDA in Ada

type SQLNAME_REC is
record

NAME_LEN : standard.short_integer;
NAME_STR : standard.string (1..30);

end record;

type SQLVAR_REC is
record

SQLTYPE : standard.short_integer;
SQLLEN : standard.short_integer;
SQLDATA : system.address;
SQLIND : system.address;
SQLNAME : sqlname_rec;

end record;
type SQLVAR_ARRAY is array (1..255) of sqlvar_rec;

type SQLDA_RECORD;
type SQLDA_ACCESS is access SQLDA_RECORD;
type SQLDA_RECORD is

record
SQLDAID : standard.string (1..8) := ’SQLDA ’;
SQLDABC : standard.integer;
SQLN : standard.short_integer;
SQLD : standard.short_integer;
SQLVAR : sqlvar_array;

end record;

Example D–2 shows the format that BASIC programs should use when they
explicitly declare the SQLDA.

Example D–2 Declaration of the SQLDA in BASIC

RECORD SQLDA_REC
string SQLDAID = 8
long SQLDABC
word SQLN ! Program must explicitly
word SQLD ! set SQLN equal to the number
GROUP SQLVAR(100) ! of occurrences of SQLVAR

word SQLTYPE
word SQLLEN
long SQLDATA
long SQLIND

(continued on next page)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–7

Example D–2 (Cont.) Declaration of the SQLDA in BASIC

GROUP SQLNAME
word SQLNAME
string SQLNAMEC = 30

END GROUP SQLNAME
END GROUP SQLVAR

END RECORD SQLDA_REC

DECLARE SQLDA_REC SQLDA

Example D–3 shows the declaration that SQL inserts when it processes a C
program that contains the INCLUDE SQLDA statement.

Example D–3 Declaration of the SQLDA in C

struct SQLDA_STRUCT {
char SQLDAID[8];
int SQLDABC;
short SQLN;
short SQLD;
struct SQLVAR_STRUCT {
short SQLTYPE;
short SQLLEN;
char *SQLDATA;
short *SQLIND;
short SQLNAME_LEN;
char SQLNAME[30];

} SQLVAR[1];
} *SQLDA;

Example D–4 shows the declaration that SQL inserts when it processes a PL/I
program that contains the INCLUDE SQLDA statement.

D–8 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Example D–4 Declaration of the SQLDA in PL/I

/*
EXEC SQL INCLUDE SQLDA;

*/
DCL 1 SQLDA BASED (SQLDAPTR),

2 SQLDAID CHAR(8),
2 SQLDABC BIN FIXED(31),
2 SQLN BIN FIXED(15),
2 SQLD BIN FIXED(15),
2 SQLVAR (SQLSIZE REFER(SQLN)),
3 SQLTYPE BIN FIXED(15),
3 SQLLEN BIN FIXED(15),
3 SQLDATA PTR,
3 SQLIND PTR,
3 SQLNAME CHAR(30) VAR;

DCL SQLSIZE BIN FIXED;
DCL SQLDAPTR PTR;

D.4 Description of Fields in the SQLDA
Table D–1 describes the different fields of the SQLDA and the ways SQL uses
the fields. Remember that the SQLDA, at any particular time, can contain
information about either select list items or parameter markers, but not both.

Table D–1 Fields in the SQLDA

Field Name Meaning of the Field Set by Used by

SQLDAID Character string field whose
value is always the character
string ‘‘SQLDA’’.

SQL Not used.

SQLDABC The length in bytes of the
SQLDA, which is a function
of SQLN (SQLDABC = 16 + (44
* SQLN)).

SQL Not used.

SQLN The total number of occurrences
of the SQLVAR group field
(the value must equal or
exceed the value in SQLD, or
the DESCRIBE statement).
Generates a run-time error.

Program SQL to determine if a program allocated enough
storage for the SQLDA.

(continued on next page)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–9

Table D–1 (Cont.) Fields in the SQLDA

Field Name Meaning of the Field Set by Used by

SQLD Number of output items (if
DESCRIBE . . . OUTPUT)
or parameter markers (if
DESCRIBE . . . INPUT) in
prepared statement (if none, the
value is 0).

SQL Program to determine how many input or output
parameters for which to allocate storage.

SQLVAR A repeating group field, each
occurrence of which describes
a select list item or parameter
marker (not used if the value of
SQLD is 0).

No value See descriptions of subfields in the following
entries.

SQLVAR Subfields (Each Occurs Once for Each Select List Item or Parameter Marker)

Field Name Meaning of the Field Set by Used by

SQLTYPE A subfield of SQLVAR whose
value indicates the data type of
the select list item or parameter
marker (see Table D–2).

SQL Program to allocate storage with the appropriate
data type for the parameter.

SQLLEN A subfield of SQLVAR whose
value indicates the length in
bytes of the select list item or
parameter marker.

For CHAR1 and CHARACTER
VARYINGR1, indicates the
declared length of the data
without length field overhead.

For fixed-length data types
(TINYINT, SMALLINT,
INTEGER, BIGINT, and
DECIMAL), SQLLEN is split
in half.

For TINYINT, SMALLINT,
INTEGER, and BIGINT, the low-
order byte of SQLLEN indicates
the length, and the high-order
byte indicates the scale (the
number of digits to the right of
the decimal point).

SQL unless
program
resets, except
DECIMAL
or H_FLOAT,
which can only
be set by user

Program to allocate storage with the appropriate
size for the select list item or parameter marker.

1Includes CHARACTER, NATIONAL CHARACTER

(continued on next page)

D–10 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Table D–1 (Cont.) Fields in the SQLDA

SQLVAR Subfields (Each Occurs Once for Each Select List Item or Parameter Marker)

Field Name Meaning of the Field Set by Used by

For DECIMAL, the low-order
byte indicates the precision, and
the high-order byte indicates the
scale. However, the SQLLEN
for a DECIMAL data type
can be set only by the user;
it is not returned by SQL on a
DESCRIBE statement.

List cursors cannot return data
in data types that require a scale
factor.

For floating-point data types, the
SQLLEN shows the length of the
field in bytes so that SQLLEN =
4 indicates the REAL data type,
SQLLEN = 8 indicates DOUBLE
PRECISION, and SQLLEN
= 16 indicates the H_FLOAT
data type. The floating point
representation of the data (VAX
versus IEEE) is determined by
the /FLOAT qualifier on the
SQL$PRE command line.

SQLDATA A subfield of SQLVAR whose
value is the address of the
storage allocated for the select
list item or parameter marker.

For CHARACTER VARYING 2,
allocate sufficient memory to
allow the length field (that is,
SQLLEN plus two octects).

Program SQL:

• In EXECUTE and OPEN statements, to
retrieve a value stored by the program and
substitute it for a parameter marker in the
prepared statement.

• In FETCH statements, to store a value from
a result table.

2Includes VARCHAR, VARCHAR2, NATIONAL CHARACTER, VARYING, RAW, and LONG VARCHAR

(continued on next page)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–11

Table D–1 (Cont.) Fields in the SQLDA

SQLVAR Subfields (Each Occurs Once for Each Select List Item or Parameter Marker)

Field Name Meaning of the Field Set by Used by

SQLIND A subfield of SQLVAR whose
value is the address of the
indicator variable, a word (16
bits) in size (if program does not
set SQLIND, the value is 0).

Program Program or SQL:

• In FETCH statements, by SQL, to store the
value for an indicator variable associated
with a select list item.

• After FETCH statements, by the program.
to retrieve the value of a select list item’s
associated indicator variable.

• In EXECUTE and OPEN statements, by
SQL, to retrieve the value of a parameter
marker’s associated indicator variable.

SQLNAME1 A varying character string
subfield of SQLVAR whose value
is:

For output items, the name
of the column in the select
list of the prepared SELECT
statement.

For input, the name of the
column to which a parameter
marker is assigned (in INSERT
or UPDATE statements) or
compared (in basic predicates).

If the select list item, assign-
ment, or comparison involves
an arithmetic expression or
predicates other than basic
predicates; SQL does not assign
a value to SQLNAME.

SQL The program, optionally, to find out the name of
the column associated with a select list item or
parameter marker.

1Includes CHARACTER, NATIONAL CHARACTER

Table D–2 shows the numeric and literal values for the SQLTYPE subfield of
SQLVAR and the meaning of those values.

D–12 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Table D–2 Codes for SQLTYPE Field of SQLDA and SQLDA2

Numeric
Value Literal Value Data Type

449 SQLDA_VARCHAR VARCHAR1, CHARACTER VARYING

453 SQLDA_CHAR CHAR, CHARACTER

481 SQLDA_FLOAT FLOAT5, REAL, DOUBLE PRECISION

485 SQLDA_DECIMAL DECIMAL

497 SQLDA_INTEGER INTEGER

501 SQLDA_SMALLINT SMALLINT

503 SQLDA_DATE DATE VMS

505 SQLDA_QUADWORD BIGINT

507 SQLDA_ASCIZ ASCIZ2

509 SQLDA_SEGSTRING LIST OF BYTE VARYING

515 SQLDA_TINYINT TINYINT

516 SQLDA_VARBYTE VARBYTE3�4

519 SQLDA2_DATETIME Date-time (ANSI)

521 SQLDA2_INTERVAL INTERVAL

1For the SQLDA2 structure, this data type has a longword length prefix.
2The SQLTYPE code for ASCIZ is never returned in the SQLDA by a DESCRIBE statement, but it can be used to
override the data type that is returned.
3This data type value is only valid for fetches of list elements.
4This data type does not allow null values.
5The floating point representation assumed by SQL for the floating point number is determined by the /FLOAT qualifier
on the SQL$MOD or SQL$PRE command line.

SQL provides a file that contains the declarations of all the SQLTYPE literal
values. Table C–2 shows how to include this file in precompiled SQL and
module language programs.

There is some confusion over the use of ASCII and ASCIZ in dynamic SQL
and C programs. When a CHAR data type is written to the database using
INSERT or UPDATE, the string is not padded with blank spaces. It contains a
null-terminated character, which makes it difficult to access the data.

SQL does not know what the host language is when using dynamic SQL; it
returns the data type of the field as in the DESCRIBE statement, (CHAR(n)),
and not the data type of the user’s host variable. The interpretation of
CHAR(n) being ASCIZ is for host variables and not database variables.

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–13

If you change the SQLDA’s SQLTYPE from CHAR to ASCIZ and increase
SQLLEN by 1, no truncation occurs and the CHAR STRING fields will be
padded with blank spaces accordingly (where incrementing SQLLEN by 1
accounts for the null terminator).

Note

SQL sets the value of SQLTYPE during the DESCRIBE statement.
However, your application program can change the value of SQLTYPE
to that of another data type.

For example, SQL does not support the DECIMAL data type in
database columns. This means that SQL will never return the code
for the DECIMAL data type in the SQLTYPE field in the SQLDA.
However, programs can set the code to that for DECIMAL, and
SQL will convert data from databases to DECIMAL, and data from
DECIMAL parameters in the program to the data type in the database.

However, SQL assumes that program parameters will correspond to the
data type indicated by the SQLTYPE code. If they do not, SQL may
generate unpredictable results.

D.5 Parameters Associated with the SQLDA: SQLSIZE and
SQLDAPTR

In addition to the declaration of the SQLDA itself, SQL declares two related
parameters: SQLSIZE and SQLDAPTR. These parameters can only be
used in PL/I programs. The PL/I program uses both parameters when
it dynamically allocates storage for the SQLDA before a DESCRIBE or
PREPARE . . . SELECT LIST INTO statement. Your program must:

• Assign a value to SQLSIZE and then assign the same value to SQLN.
Because the declaration of the SQLDA refers both to SQLSIZE and SQLN,
the program uses that value when it allocates memory for the SQLDA.

• Dynamically allocate memory for the SQLDA based on the value assigned
to SQLN, and assign the address for memory used by the SQLDA into
SQLDAPTR.

The following program fragment shows how a PL/I program uses SQLSIZE and
SQLDAPTR to allocate storage for the SQLDA:

D–14 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

#include <stdlib.h>
#define SQLVAR_ELEMENTS 20

/* Declare the SQL Descriptor Area: */
exec sql

include SQLDA;

/* Allocate memory for the SQLDA and
* set the value of its SQLN field:
*/
SQLDA = malloc (16 + 44 * SQLVAR_ELEMENTS);
SQLDA->SQLN = SQLVAR_ELEMENTS;

D.6 Purpose of the SQLDA2
SQL provides an extended version of the SQLDA, called the SQLDA2, which
supports additional fields and field sizes.

You can use either the SQLDA or SQLDA2 in any dynamic SQL statement
that calls for a descriptor area. SQL assumes default values for SQLDA2 fields
and field sizes if you use an SQLDA structure to provide input parameters for
an application; however, SQL issues an error message if the application cannot
represent resulting values.

Use the SQLDA2 instead of the SQLDA when any of the following applies to
the parameter markers or select list items:

• The length of the column name is greater than 30 octets. (An octet is 8
bits.)

• The data type of the column is DATE, DATE VMS, DATE ANSI, TIME,
TIMESTAMP, or any of the interval data types.

• The data type is CHAR, CHAR VARYING, CHARACTER, CHARACTER
VARYING, VARCHAR, LONG VARCHAR, or RAW and any of the following
is true:

The character set is not the default 8-bit character set.

The maximum length in octets exceeds 32,767.

You can examine the SQLDA2 after SQL fills in the items on a PREPARE
statement. Oracle Rdb recommends this rather than setting the fields yourself.

Use one of the following methods to extract the data for your own use:

• The CAST function to convert the data to TEXT before using it

• The EXTRACT function to extract individual fields so you can format it

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–15

• The CAST function to convert to DATE VMS so that you can use OpenVMS
system services

The ANSI/ISO SQL standard specifies that the data is always returned to the
application program as CHAR data.

D.6.1 Declaring the SQLDA2
Programs can declare the SQLDA2 in the same way as they declare an SQLDA,
described in Section D.3.

To indicate to SQL that the structure is an SQLDA2 instead of an SQLDA,
your program must set the SQLDAID field to be the character string containing
the word SQLDA2 followed by two spaces.

The following examples show declarations of the SQLDA2 for different host
languages. For PL/I, C, and Ada, the examples show the declaration SQL
inserts when it processes a program that contains the INCLUDE SQLDA
statement. For other languages, the examples show the format that programs
should use when they explicitly declare the SQLDA.

Example D–5 shows the declaration that SQL inserts when it processes an Ada
program that contains the INCLUDE SQLDA2 statement. In this example, N
stands for the maximum number of occurrences of SQLVAR2.

Example D–5 Declaration of the SQLDA2 in Ada

type SQLNAME_REC is
record

NAME_LEN : standard.short_integer;
NAME_STR : standard.string (1..128);

end record;
type SQLVAR_REC is

record
SQLTYPE : standard.short_integer;
SQLLEN : standard.integer;
SQLDATA : system.address;
SQLIND : system.address;
SQLCHRONO_SCALE: standard.integer;
SQL_CHRONO_PRECISION: standard.integer;
SQLNAME : sqlname_rec;
SQLCHAR_SET_NAME : standard.string(1..128);
SQLCHAR_SET_SCHEMA : standard.string(1..128);
SQLCHAR_SET_CATALOG : standard.string(1..128);

end record;
type SQLVAR_ARRAY is array (1..N) of sqlvar_rec;

(continued on next page)

D–16 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Example D–5 (Cont.) Declaration of the SQLDA2 in Ada

type SQLDA_RECORD;
type SQLDA_ACCESS is access SQLDA_RECORD;
type SQLDA_RECORD is

record
SQLDAID : standard.string (1..8) := ’SQLDA2 ’;
SQLDABC : standard.integer;
SQLN : standard.short_integer;
SQLD : standard.short_integer;
SQLVAR : sqlvar_array;

end record;

Example D–6 shows the format that BASIC programs should use when they
explicitly declare the SQLDA2.

Example D–6 Declaration of the SQLDA2 in BASIC

RECORD SQLDA_REC
string SQLDAID = 8 ! Value must be "SQLDA2 ".
long SQLDABC
word SQLN ! Program must explicitly
word SQLD ! set SQLN equal to the number
GROUP SQLVAR(N) ! of occurrences of SQLVAR.

word SQLTYPE
long SQLLEN
long SQLOCTET_LEN
long SQLDATA
long SQLIND
long SQLCHRONO_SCALE
long SQLCHRONO_PRECISION
GROUP SQLNAME

word SQLNAME
string SQLNAMEC = 128

END GROUP SQLNAME
string SQLCHAR_SET_NAME = 128
string SQLCHAR_SET_SCHEMA = 128
string SQLCHAR_SET_CATALOG = 128

END GROUP SQLVAR
END RECORD SQLDA_REC

DECLARE SQLDA_REC SQLDA2

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–17

Example D–7 shows the declaration that SQL inserts when it processes a C
program that contains the INCLUDE SQLDA2 statement.

Example D–7 Declaration of the SQLDA2 in C

struct SQLDA_STRUCT {
char SQLDAID[8]; /*Value must be "SQLDA2 "*/
int SQLDABC; /* ignored. */
short SQLN;
short SQLD;
struct {
short SQLTYPE;
long SQLLEN;
long SQLOCTET_LEN
char *SQLDATA;
long *SQLIND;
long SQLCHRONO_SCALE
long SQLCHRONO_PRECISION
short SQLNAME_LEN;
char SQLNAME[128];
char SQLCHAR_SET_NAME[128];
char SQLCHAR_SET_SCHEMA[128];
char SQLCHAR_SET_CATALOG[128];

} SQLVAR[N]; /* N is maximum number of */
} *SQLDA; /* occurrences of SQLVAR. */

D.6.2 Description of Fields in the SQLDA2
The SQLVAR2 field for an SQLDA2 structure comprises the following
parameters that describe individual select list items or parameter markers
of a prepared statement:

• Length (SQLLEN and SQLOCTET_LEN fields)

Note

There is a major difference between the SQLLEN fields in the SQLDA
and the SQLDA2. In the SQLDA, the SQLLEN field contains the
length of the field in bytes. In the SQLDA2, the SQLLEN field either
contains the length of the field in characters or is a subtype field
for certain data types (INTERVAL and LIST OF BYTE VARYING).
This is the case when you issue the DESCRIBE statement to return
information from SQL to your program.

The SQLOCTET_LEN field in the SQLDA2 is analogous to the
SQLLEN field in the SQLDA. Use SQLOCTET_LEN instead of

D–18 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

SQLLEN to allocate dynamic memory for the SQLDATA field when
using the SQLDA2.

• Data type (SQLTYPE)

• Scale and precision (SQLLEN or SQLCHRONO_SCALE and SQLCHRONO_
PRECISION)

• Character set information (SQLCHAR_SET_NAME, SQLCHAR_SET_
SCHEMA, SQLCHAR_SET_CATALOG)

• Data value (SQLDATA)

• Null indicator value (SQLIND)

• Name for resulting columns of a cursor specification (SQLNAME)

Table D–3 describes the different fields of the SQLDA2 and the ways in which
SQL uses the fields when passing them to dynamic SQL. Remember that the
SQLDA2 at any particular time can contain information about either select list
items or parameter markers, but not both.

Table D–3 Fields in the SQLDA2

Field Name Meaning of the Field Set by Used by

SQLDAID Character string field whose value is always the
character string ‘‘SQLDA2 ’’ (SQLDA2 followed
by two spaces).

Program SQL to determine if the
structure is an SQLDA or an
SQLDA2.

SQLDABC The length in bytes of the SQLDA2, which is
a function of SQLN (SQLDABC = 16+ (540 *
SQLN)).

SQL Not used.

SQLN The total number of occurrences of the
SQLVAR2 group field (the value must equal
or exceed the value in SQLD or the DESCRIBE
or PREPARE OUTPUT INTO statement).
Generates a run-time error.

Program SQL to determine if program
allocated enough storage for
the SQLDA.

(continued on next page)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–19

Table D–3 (Cont.) Fields in the SQLDA2

Field Name Meaning of the Field Set by Used by

SQLD Number of select list items (if DESCRIBE . . .
OUTPUT) or parameter markers (if DESCRIBE . . .
INPUT) in prepared statement (if none, the
value is 0).

SQL Program to determine how
many input or output
parameters for which to
allocate storage.

SQLVAR2 A repeating group field, each occurrence of
which describes a select list item or parameter
marker (not used if the value of SQLD is 0).

No value See descriptions of subfields
in following entries.

SQLVAR2 Subfields (Each Occurs Once for Each Select List Item or Parameter Marker):

Field Name Meaning of the Field Set by Used by

SQLTYPE A subfield of SQLVAR2 whose value indicates
the data type of the select list item or
parameter marker (see Table D–2).

SQL Program to allocate storage
with the appropriate data
type for the parameter.

SQLLEN A subfield of SQLVAR2 whose value indicates
the length of the select list item or parameter
marker.

SQL, unless
the program
resets,
except for
DECIMAL,
which can
only be set
by the user.

For character types, CHAR, CHARACTER
VARYING types SQLLEN indicates the declared
size, not including length overheads. See
SQLOCTET_LEN.

For fixed-length data types (TINYINT,
SMALLINT, INTEGER, BIGINT, NUMERIC,
and DECIMAL), SQLLEN is split in half.

SQLSIZE—the low-order 16 bits

• For TINYINT, SMALLINT, INTEGER,
and BIGINT; SQLSIZE and SQLOCTET_
LENGTH indicate the length in bytes of
the select list item or parameter marker.

• For DECIMAL; SQLSIZE indicates the
precision. However, the SQLLEN for a
DECIMAL data type can only be set by
the user; it is not returned by SQL on a
DESCRIBE statement.

(continued on next page)

D–20 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Table D–3 (Cont.) Fields in the SQLDA2

SQLVAR2 Subfields (Each Occurs Once for Each Select List Item or Parameter Marker):

Field Name Meaning of the Field Set by Used by

SQLSCALE—the high-order 16 bits

• SQLSCALE indicates the scale (the
number of digits to the right of the decimal
point).

• List cursors cannot return data in data
types that require a scale factor.

For floating-point data types, SQLLEN and
SQLOCTET_LEN are the size in octets of the
select list item or parameter marker.

For DATE, DATE ANSI, DATE VMS, TIME,
or TIMESTAMP, SQLLEN is the length of the
date-time data type.

For INTERVAL data types, SQLLEN is set to
one of the codes specified in Table D–4.

Program to allocate storage
with the appropriate size
for the select list item or
parameter marker.

SQLOCTET_LEN A subfield of SQLVAR2 whose value indicates
the length in octets of the select list item or
parameter marker.

If SQLTYPE indicates CHAR1, then SQLOCTET_
LEN is the maximum possible length in octets
of the character string.

SQL, unless
the program
resets.

Program or SQL.

If SQLTYPE2 indicates CHARACTER
VARYING, SQLOCTET_LEN is the maximum
possible length in octets required to represent
the character string, including the octets
required to represent the string length (that
is, 4 additional octets.)

If SQLTYPE indicates a fixed-scale or floating-
point numeric data type, SQLOCTET_LEN is
the size in octets of the numeric select list item
or parameter marker.

If SQLTYPE indicates a date-time or interval
data type, then dynamic SQL ignores
SQLOCTET_LEN.

1Includes CHARACTER, NATIONAL CHARACTER
2Includes VARCHAR, VARCHAR2, NATIONAL CHARACTER, VARYING, RAW, and LONG VARCHAR

(continued on next page)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–21

Table D–3 (Cont.) Fields in the SQLDA2

SQLVAR2 Subfields (Each Occurs Once for Each Select List Item or Parameter Marker):

Field Name Meaning of the Field Set by Used by

SQLCHRONO_
SCALE

A longword subfield of SQLVAR2 whose value
indicates the specific date-time data type of the
column.

When SQLTYPE represents a date-time data
type, SQLCHRONO_SCALE contains a code
specified in Table D–5.

SQL, unless
the program
resets.

Program.

When SQLTYPE represents an interval data
type, SQLCHRONO_SCALE contains the
implied or specified interval leading field
precision.

When SQLTYPE represents a data type that is
neither date-time nor interval, SQLCHRONO_
SCALE contains 0.

SQLCHRONO_
PRECISION

A longword subfield of SQLVAR2 whose
value indicates the precision of the column
represented by SQLVAR2 when that column has
a date-time data type.

When SQLTYPE represents a TIME or
TIMESTAMP data type, SQLCHRONO_
PRECISION contains the time precision or
timestamp precision.

SQL, unless
the program
resets.

Program.

When SQLTYPE represents an interval data
type with a fractional seconds precision,
SQLCHRONO_PRECISION is set to that value.
Otherwise, SQLCHRONO_PRECISION is set to
0.

SQLCHAR_SET_
NAME

A 128-byte subfield of SQLVAR2 whose value
is the character set name if SQLTYPE is a
character string type, and spaces if SQLTYPE
is any other data type.

SQL, unless
the program
resets.

The SQLCHAR_SET_NAME
field indicates the character
set name of a select list item
or parameter marker if the
select list item or parameter
marker has a character
data type. Table D–6
shows the possible values
for the SQLCHAR_SET_
NAME field when the
SQLTYPE indicates one
of the character data types.

(continued on next page)

D–22 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Table D–3 (Cont.) Fields in the SQLDA2

SQLVAR2 Subfields (Each Occurs Once for Each Select List Item or Parameter Marker):

Field Name Meaning of the Field Set by Used by

SQLCHAR_SET_
SCHEMA

A 128-byte subfield of SQLVAR2 whose value
is the character set of the schema name if
SQLTYPE is a character string type, and spaces
if SQLTYPE is any other data type.

Reserved for
future use.

Reserved for future use.

SQLCHAR_SET_
CATALOG

A 128-byte subfield of SQLVAR2 whose value
is the character set of the catalog name if
SQLTYPE is a character string type, and spaces
if SQLTYPE is any other data type.

Reserved for
future use.

Reserved for future use.

SQLDATA A subfield of SQLVAR2 whose value is the
address of the storage allocated for the
select list item or parameter marker. Use
SQLOCTET_LEN to allocate memory for this
pointer.

Program. SQL:

• In EXECUTE and
OPEN statements,
to retrieve a value
stored by the program
and substitute it for a
parameter marker in
the prepared statement.

• In FETCH statements,
to store a value from a
result table.

SQLIND A subfield of SQLVAR2 whose value is the
address of a longword indicator variable, a
longword (32 bits) in size (if the program does
not set an indicator variable, the value is 0).

Program. Program or SQL:

• In FETCH statements,
by SQL to store the
value for an indicator
variable associated with
a select list item.

• After FETCH
statements, by program
to retrieve the value
of a select list item’s
associated indicator
variable.

• In EXECUTE and
OPEN statements, by
SQL to retrieve the
value of a parameter
marker’s associated
indicator variable.

(continued on next page)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–23

Table D–3 (Cont.) Fields in the SQLDA2

SQLVAR2 Subfields (Each Occurs Once for Each Select List Item or Parameter Marker):

Field Name Meaning of the Field Set by Used by

SQLNAME A varying character string subfield of SQLVAR2
whose value is:

• For select list items, the name of the
column in the select list of the prepared
SELECT statement.

• For parameter markers, the name of the
column to which a parameter marker
is assigned (in INSERT or UPDATE
statements) or compared (in basic
predicates).

If the select list item, assignment, or
comparison involves an arithmetic expression
or predicates other than basic predicates, SQL
does not assign a value to SQLNAME.

SQL. Program, optionally, to find
out the name of the column
associated with a select list
item or parameter marker.

SQLNAME_LEN A subfield of SQLVAR2 whose value is the
length in octets of the column named by
SQLNAME.

Table D–4 shows the possible values for the SQLLEN field when the SQLTYPE
indicates one of the interval data types.

D–24 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Table D–4 Codes for Interval Qualifiers in the SQLDA2

Code Interval Qualifier Interval Subtype

1 YEAR SQLDA2_DT_YEAR

2 MONTH SQLDA2_DT_MONTH

3 DAY SQLDA2_DT_DAY

4 HOUR SQLDA2_DT_HOUR

5 MINUTE SQLDA2_DT_MINUTE

6 SECOND SQLDA2_DT_SECOND

7 YEAR TO MONTH SQLDA2_DT_YEAR_MONTH

8 DAY TO HOUR SQLDA2_DT_DAY_HOUR

9 DAY TO MINUTE SQLDA2_DT_DAY_MINUTE

10 DAY TO SECOND SQLDA2_DT_DAY_SECOND

11 HOUR TO MINUTE SQLDA2_DT_HOUR_MINUTE

12 HOUR TO SECOND SQLDA2_DT_HOUR_SECOND

13 MINUTE TO SECOND SQLDA2_DT_MINUTE_SECOND

Table D–5 shows the possible values for the SQLCHRONO_SCALE field when
SQLTYPE indicates the data type DATE, DATE ANSI, DATE VMS, TIME or
TIMESTAMP.

Table D–5 Codes for Date-Time Data Types in the SQLDA2

Code Date-Time Data Type Date-Time Subtypes

1 DATE ANSI SQLDA2_DT_DATE

2 TIME SQLDA2_DT_TIME

3 TIMESTAMP SQLDA2_DT_TIMESTAMP

4 TIME WITH TIME ZONE SQLDA2_DT_TIME_TZ

5 TIMESTAMP WITH TIME ZONE SQLDA2_DT_TIMESTAMP_TZ

Table D–6 shows the possible values for the SQLCHAR_SET_NAME field when
the SQLTYPE indicates one of the character data types.

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D–25

Table D–6 Values for the SQLCHAR_SET_NAME Field

Character Set Value Description

DEFAULT Database default character set

GB18030 PRC Simplified Chinese

NATIONAL National character set

UNSPECIFIED The character set is unspecified. SQL does not
check for compatibility of data.

name-of-cset See Table 2-1 in Volume 1 for a list of supported
character set names.

D–26 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

E
Logical Names Used by SQL

Table E–1 lists the logical names that SQL recognizes for special purposes.

Table E–1 Summary of SQL Logical Names

Logical Name Function

RDB$CHARACTER_SET Specifies the database default and national character sets in addition to the
session default, identifier, literal, and national character sets. Table E–2
shows the valid equivalence names for the logical name.

The logical name is used by the EXPORT and IMPORT statements and by
the SQL precompiler and SQL module language to allow compatibility of
most recent versions with earlier versions of Oracle Rdb. This logical name
sets the attributes for the default connection.

This logical name is also deprecated and will not be supported in a future
release.

RDB$LIBRARY Specifies a protected library that you can use to store external routine
images, such as external functions. Oracle Rdb recommends that you
manage public or sensitive external routine images using a protected
library that is referenced by the logical name RDB$LIBRARY. You should
define RDB$LIBRARY as an executive mode logical name in the system
logical name table. If the external routine image is located in the protected
area, you can ensure that the desired image is used by specifying the
RDB$LIBRARY logical name with an explicit file name in the LOCATION
clause plus the WITH SYSTEM LOGICAL_NAME TRANSLATION clause in
a CREATE FUNCTION statement.

RDB$ROUTINES Specifies the location of an external routine image. If you do not specify
a location clause in a CREATE FUNCTION, CREATE PROCEDURE, or
CREATE MODULE statement, or if you specify the DEFAULT LOCATION
clause, SQL uses the RDB$ROUTINES logical name as the default image
location.

RDMS$BIND_OUTLINE_MODE When multiple outlines exist for a query, this logical name is defined to
select which outline to use.

RDMS$BIND_QG_CPU_TIMEOUT Specifies the amount of CPU time used to optimize a query for execution.

(continued on next page)

Logical Names Used by SQL E–1

Table E–1 (Cont.) Summary of SQL Logical Names

Logical Name Function

RDMS$BIND_QG_REC_LIMIT Specifies the number of rows that SQL fetches before the query governor
stops output.

RDMS$BIND_QG_TIMEOUT Specifies the number of seconds that SQL spends compiling a query before
the query governor aborts that query.

RDMS$BIND_SEGMENTED_STRING_
BUFFER

Allows you to reduce the overhead of I/O operations at run time when you
are manipulating a segmented string.

RDMS$DEBUG_FLAGS Allows you to examine database access strategies and the estimated cost of
those strategies when your program runs.

RDMS$SET_FLAGS Allows you to examine database access strategies and the estimated cost of
those strategies when your program runs. See the SET FLAGS Statement
for a list of valid keywords that can be used with this logical name.

RDMS$DIAG_FLAGS When defined to ’L’, prevents the opening of a scrollable list cursor when
the online format of lists is chained.

RDMS$RTX_SHRMEM_PAGE_CNT Specifies the size of the shared memory area used to manipulate server
site-bound, external routine parameter data and control data.

RDMS$USE_
OLD_CONCURRENCY

Allows applications to use the isolation-level behavior that was in effect for
V4.1.

RDMS$USE_OLD_SEGMENTED_
STRING

When defined to YES, the default online format for lists (segmented strings)
is chained.

RDMS$VALIDATE_ROUTINE Controls the validation of routines.

SQL$DATABASE Specifies the database that SQL declares if you do not explicitly declare a
database.

SQL$DISABLE_CONTEXT Disables the two-phase commit protocol. Useful for turning off distributed
transactions when you want to run batch-update transactions.

SQL$EDIT Specifies the editor that SQL invokes when you issue the EDIT statement in
interactive SQL. See the EDIT Statement for details.

SQLINI Specifies the command file that SQL executes when you invoke interactive
SQL.

SYS$CURRENCY Specifies the character that SQL substitutes for the dollar sign ($) symbol
in an EDIT STRING clause of a column or domain definition, or the EDIT
USING clause of a SELECT statement.

(continued on next page)

E–2 Logical Names Used by SQL

Table E–1 (Cont.) Summary of SQL Logical Names

Logical Name Function

SYS$DIGIT_SEP Specifies the character that SQL substitutes for the comma symbol (,) in an
EDIT STRING clause of a column or domain definition, or the EDIT USING
clause of a SELECT statement.

SYS$LANGUAGE Specifies the language that SQL uses for date and time input and displays,
or the EDIT USING clause of a SELECT statement.

SYS$RADIX_POINT Specifies the character that SQL substitutes for the decimal point symbol (.)
in an EDIT STRING clause of a column or domain definition, or the EDIT
USING clause of a SELECT statement.

Table E–2 shows the valid equivalence names for the logical name
RDB$CHARACTER_SET.

Table E–2 Valid Equivalence Names for RDB$CHARACTER_SET Logical
Name

Character Set Name of Character Set Equivalence Name

MCS DEC_MCS Undefined

Korean and ASCII DEC_KOREAN DEC_HANGUL

Hanyu and ASCII DEC_HANYU DEC_HANYU

Hanzi and ASCII DEC_HANZI DEC_HANZI

Kanji and ASCII DEC_KANJI DEC_KANJI

For more information on these and other logical names, see the Oracle Rdb7
Guide to Database Performance and Tuning.

Logical Names Used by SQL E–3

F
Obsolete SQL Syntax

This appendix describes:

• Incompatible syntax

Certain SQL statements that were allowed in earlier versions of SQL now
have different behavior that is incompatible with earlier versions. You
must modify existing applications.

• Deprecated syntax

Certain SQL statements that were allowed in earlier versions of SQL
will be identified (flagged) with diagnostic messages. SQL refers to such
statements as deprecated features. Although these statements will process
with expected behavior for this release, SQL may not support them in
future versions. You should replace deprecated syntax with the new syntax
in applications.

• Reserved words deprecated as identifiers

If any of the listed reserved words is used as an identifier without double
quotation marks ("), SQL flags the usage as being noncompliant with the
ANSI/ISO standard and issues a deprecated feature message.

• Punctuation changes

This section describes changes to punctuation marks used in SQL.

• Suppressing diagnostic messages

This section describes how to suppress the diagnostic messages about
deprecated features.

F.1 Incompatible Syntax
The following sections describe incompatible syntax.

Obsolete SQL Syntax F–1

F.1.1 Incompatible Syntax Containing the SCHEMA Keyword
Because one database may contain multiple schemas, the following
incompatible changes apply to SQL syntax containing the SCHEMA keyword.

F.1.1.1 CREATE SCHEMA Meaning Incompatible
Use of the CREATE SCHEMA statement to create a database is deprecated. If
you use the CREATE SCHEMA statement to specify the physical attributes of
a database such as the root file parameters, SQL issues the deprecated feature
message and interprets the statement as it did in previous versions of SQL.

SQL> CREATE SCHEMA PARTS SNAPSHOT IS ENABLED;
%SQL-I-DEPR_FEATURE, Deprecated Feature: SCHEMA (meaning DATABASE)
SQL>

However, if you do not specify any physical attributes of a database, you must
enable multischema naming to use the CREATE SCHEMA statement.

SQL> CREATE SCHEMA PARTS;
%SQL-F-SCHCATMULTI, Schemas and catalogs may only be referenced with
multischema enabled

When you enable multischema naming, the CREATE SCHEMA statement
creates a new schema within the current catalog.

SQL> ATTACH ’ALIAS Q4 FILENAME INVENTORY MULTISCHEMA IS ON’;
SQL> CREATE SCHEMA PARTS;
SQL> SHOW SCHEMAS;
Schemas in database with alias Q4

RDB$SCHEMA
PARTS

F.1.1.2 SHOW SCHEMA Meaning Incompatible
If you use a SHOW SCHEMA statement when you are attached to a database
with the multischema attribute and have multischema naming enabled, SQL
shows all the schemas for the current catalog. To show a database, use the
SHOW DATABASE or SHOW ALIAS statement.

If you use a SHOW SCHEMA statement when you do not have multischema
enabled, SQL issues an error message.

F.1.1.3 DROP SCHEMA Meaning Incompatible
If you use a DROP SCHEMA statement when you are attached to a database
with the multischema attribute and have multischema naming enabled, SQL
deletes the named schema from that database.

If you use a DROP SCHEMA statement when you do not have multischema
enabled, SQL issues an error message.

F–2 Obsolete SQL Syntax

If you use a DROP SCHEMA FILENAME statement, SQL interprets this as it
would have in V4.0 and prior versions; it deletes the database with the named
file name, and issues a deprecated feature error message.

F.1.2 DROP TABLE Now Restricts by Default
In V4.1 and higher, the default behavior of the DROP TABLE statement is a
restricted delete, not a cascading delete as in earlier versions. Only the table
will be deleted. If other items (views, constraints, indexes, or triggers) refer to
the specified table, the delete will fail, as shown in the following example:

SQL> DROP TABLE DEGREES;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-TRGEXI, relation DEGREES is referenced in trigger
COLLEGE_CODE_CASCADE_UPDATE
-RDMS-F-RELNOTDEL, relation DEGREES has not been deleted

If you specify the CASCADE keyword for SQL DROP TABLE statements, SQL
deletes all items that refer to the table or view, then deletes the table itself.
The following example shows a cascading delete:

SQL> DROP TABLE JOB_HISTORY CASCADE;
View CURRENT_INFO is also being dropped.
View CURRENT_JOB is also being dropped.
Constraint JOB_HISTORY_FOREIGN1 is also being dropped.
Constraint JOB_HISTORY_FOREIGN2 is also being dropped.
Constraint JOB_HISTORY_FOREIGN3 is also being dropped.
Index JH_EMPLOYEE_ID is also being dropped.
Index JOB_HISTORY_HASH is also being dropped.
VIA clause on storage map JOB_HISTORY_MAP is also being dropped.
Trigger EMPLOYEE_ID_CASCADE_DELETE is also being dropped.

F.1.3 Database Handle Names Restricted to 25 Characters
The database handle name is called an alias in SQL. When sessions are
enabled by the OPTIONS=(CONNECT) qualifier on the SQL precompiler
command line or the CONNECT qualifier on the module language command
line, the length of an alias can be no more than 25 characters. The database
handle was called an authorization identifier in versions of SQL prior to V4.1.

F.1.4 Deprecated Default Semantics of the ORDER BY Clause
In V4.1 and previous versions, SQL had the following default semantics:

• The ANSI/ISO 1989 standard provides a different direction. In future
releases, SQL will assign the sort order of ASC to any key not specifically
qualified with DESC.

Obsolete SQL Syntax F–3

• SQL will issue a deprecated feature warning if any sort keys inherit the
DESC qualifier.

Note

If you do not specify ASC or DESC for the second or subsequent sort
keys, SQL uses the order you specified for the preceding sort keys. If
you do not specify the sorting order with the first sort key, the default
order is ascending.

F.1.5 Change to EXTERNAL NAMES IS Clause
The multischema EXTERNAL NAME IS clause has changed to the STORED
NAME IS clause to avoid confusion with ANSI/ISO SQL standards.

F.2 Deprecated Syntax
Table F–1 lists SQL statements that have been replaced by new syntax. These
statements will be allowed by SQL, but in some cases SQL flags the statement
with a deprecated feature message.

Table F–1 Deprecated Syntax for SQL

Deprecated Statement New Syntax Deprecated Feature Message?

ALTER CACHE . . .
LARGE MEMORY IS ENABLED

ALTER CACHE ... SHARED
MEMORY IS PROCESS RESIDENT

ALTER CACHE . . .
SHARED MEMORY IS SYSTEM

ALTER CACHE . . . SHARED
MEMORY IS PROCESS RESIDENT

ALTER CACHE . . .
WINDOW COUNT IS . . .

None

ALTER SCHEMA ALTER DATABASE Yes

CREATE CACHE . . .
LARGE MEMORY IS ENABLED

CREATE CACHE . . . SHARED
MEMORY IS PROCESS RESIDENT

CREATE CACHE . . .
SHARED MEMORY IS SYSTEM

CREATE CACHE . . . SHARED
MEMORY IS PROCESS RESIDENT

CREATE CACHE . . .
WINDOW COUNT IS . . .

None

CREATE SCHEMA CREATE DATABASE Yes1

1See Section F.1 for more information.

(continued on next page)

F–4 Obsolete SQL Syntax

Table F–1 (Cont.) Deprecated Syntax for SQL

Deprecated Statement New Syntax Deprecated Feature Message?

DECLARE SCHEMA — module
language and precompiled SQL

DECLARE ALIAS Yes

DECLARE SCHEMA — dynamic and
interactive SQL

ATTACH In interactive SQL, but not in
dynamic SQL

DECLARE and SET TRANSACTION
— CONSISTENCY LEVEL 2, 3

ISOLATION LEVEL READ
COMMITTED
ISOLATION LEVEL REPEATABLE
READ
ISOLATION LEVEL SERIALIZABLE

Yes

DROP SCHEMA FILENAME DROP DATABASE FILENAME Message only in precompiled SQL
and SQL module language

DROP SCHEMA PATHNAME DROP DATABASE PATHNAME Message only in precompiled SQL
and SQL module language

DROP SCHEMA AUTHORIZATION DROP DATABASE ALIAS Message only in precompiled SQL
and SQL module language

EXPORT SCHEMA FILENAME EXPORT DATABASE FILENAME No

EXPORT SCHEMA PATHNAME EXPORT DATABASE PATHNAME No

EXPORT SCHEMA AUTHORIZATION EXPORT DATABASE ALIAS No

FINISH DISCONNECT DEFAULT Yes, if databases are declared with
DECLARE SCHEMA; otherwise,
error message on nonconforming
usage

GRANT on SCHEMA AUTHORIZATION GRANT ON DATABASE ALIAS Yes

IMPORT SCHEMA AUTHORIZATION IMPORT DATABASE FROM
filespec WITH ALIAS

Yes

INTEGRATE INTEGRATE DATABASE Yes

PREPARE . . . SELECT LIST DESCRIBE . . . SELECT LIST Yes

REVOKE REVOKE ON DATABASE ALIAS Yes

SET ANSI SET DEFAULT DATE FORMAT
SET KEYWORD RULES
SET QUOTING RULES
SET VIEW UPDATE RULES

No

ALTER DATABASE . . .
JOURNAL IS . . .
[NO]CACHE FILENAME . . .

None Yes. Functionality no longer provides
benefit on new hardware

(continued on next page)

Obsolete SQL Syntax F–5

Table F–1 (Cont.) Deprecated Syntax for SQL

Deprecated Statement New Syntax Deprecated Feature Message?

ALTER DATABASE . . .
JOURNAL IS . . .
NOTIFY

CREATE or ALTER DATABASE
NOTIFY

Yes. Feature no longer part of the
Alter image journaling functionality.

WRITE ONCE storage area attribute None Yes. Functionality is no longer
available in hardware

VARIANT NOT DETERMINISTIC No. New syntax conforms to
SQL:1999 Language Standard

NOT VARIANT DETERMINISTIC No. New syntax conforms to
SQL:1999 Language Standard

GENERAL PARAMETER STYLE PARAMETER STYLE GENERAL No. New syntax conforms to
SQL:1999 Language Standard

WHILE . . . LOOP . . . END LOOP WHILE . . . DO . . . END WHILE No. New syntax conforms to
SQL:1999 Language Standard

F.2.1 Command Line Qualifiers
Certain qualifiers in the SQL module language and precompiler command lines
have been replaced. These are:

• The ANSI_AUTHORIZATION qualifier is replaced by the RIGHTS clause.

• The ANSI_DATE qualifier is replaced by the DEFAULT DATE FORMAT
clause.

• The ANSI_IDENTIFIERS qualifier is replaced by the KEYWORD RULES
clause.

• The ANSI_PARAMETERS qualifier is replaced by the PARAMETER
COLONS clause.

• The ANSI_QUOTING qualifier is replaced by the QUOTING RULES
clause.

F.2.2 Deprecated Interactive SQL Statements
If you use the SET ANSI statement, SQL returns a deprecated feature
message. This statement has been replaced by:

• The SET ANSI DATE statement is replaced by the SET DEFAULT DATE
FORMAT statement. See the SET DEFAULT DATE FORMAT Statement
for more information.

• The SET ANSI IDENTIFIERS statement is replaced by the SET
KEYWORD RULES statement. See the SET KEYWORD RULES
Statement for more information.

F–6 Obsolete SQL Syntax

• The SET ANSI QUOTING statement is replaced by the SET QUOTING
RULES statement. See the SET QUOTING RULES Statement for more
information.

F.2.3 Constraint Conformance to the ANSI/ISO SQL Standard
The location of the constraint name in the CREATE TABLE statement has
been changed for ANSI/ISO SQL conformance. Constraint names are expected
before the constraint rather than after. If you place a constraint name after
the constraint, you get the following deprecated feature message:

SQL> CREATE TABLE TEMP2
cont> (COL1 REAL NOT NULL CONSTRAINT C7);
%SQL-I-DEPR_FEATURE, Deprecated Feature: Constraint name clause following
constraint definition
%SQL-I-DEPR_FEATURE, Deprecated Feature: Default evaluation for constraints:
DEFERRABLE

The default evaluation time of DEFERRABLE for constraints has been
deprecated. If your dialect is SQLV40, constraints are still DEFERRABLE by
default. However, you will receive the following deprecated feature message if
you do not specify an evaluation time:

SQL> CREATE TABLE TEMP3
cont> (COL1 REAL CONSTRAINT C6 NOT NULL);
%SQL-I-DEPR_FEATURE, Deprecated Feature: Default evaluation for constraints:
DEFERRABLE

If your dialect is SQL92 or SQL99, constraints are NOT DEFERRABLE by
default, and you do not receive deprecated feature messages.

F.2.4 Obsolete Keywords
Table F–2 lists obsolete keywords and preferred substitutes for SQL
statements.

Table F–2 Obsolete SQL Keywords

Obsolete Keyword Preferred Keyword

COMMIT_TIME COMMIT TIME

CREATETAB CREATE

DIAGNOSTIC CONSTRAINT

QUADWORD BIGINT

(continued on next page)

Obsolete SQL Syntax F–7

Table F–2 (Cont.) Obsolete SQL Keywords

Obsolete Keyword Preferred Keyword

READ_ONLY READ ONLY

READ_WRITE READ WRITE

VERB_TIME VERB TIME

If you use the obsolete keywords, you receive the following diagnostic message:

SET TRANSACTION READ_ONLY;
1

%SQL-I-DEPR_FEATURE, (1) Deprecated Feature: READ_ONLY

F.2.5 Obsolete Built-in Functions
Several functions that were supplied as SQL or external routines in the
SYS$LIBRARY:SQL_FUNCTIONS library are now obsolete and have been
replaced with native SQL builtin functions.

• The function ABS was provided as an SQL function that accepted a
DOUBLE PRECISION argument and returned a DOUBLE PRECISION
result.

The native SQL function supports a wider range of of data types (numeric
and INTERVAL types) and is more generally useful.

• The functions LEAST and GREATEST were provided as SQL functions
that accepted only two integer arguments.

The native SQL functions allow for a wider range of data types, and
support a parameter list of arbitrary length.

• The functions LENGTH and LENGTHB were provided as SQL stored
functions that accepted a VARCHAR (2000) parameter and performed the
appropriate CHARACTER_LENGTH or OCTET_LENGTH operation on the
argument.

The native SQL functions allow for a wider range of character set values
and larger sizes for the character data types.

Now that SQL implements these functions directly these definitions in
SYS$LIBRARY:SQL_FUNCTIONS are no longer required. However, they
are retained in the database for existing applications but new applications will
now automatically use new native functions in Oracle Rdb.

F–8 Obsolete SQL Syntax

F.3 Deprecated Logical Names
The following sections describe deprecated logical names and, if applicable, the
logical name replacement.

See Appendix E for more information regarding any new logical names.

F.3.1 RDB$CHARACTER_SET Logical Name
The logical name RDB$CHARACTER_SET has been deprecated. It is used by
SQL to allow compatibility for databases and applications from V4.1 and V4.0.

When you are using versions higher than V4.1 and V4.0, Oracle Rdb
recommends that you use the following clauses and statements in place of
the logical name:

• The DEFAULT CHARACTER SET and NATIONAL CHARACTER SET
clauses in the DECLARE ALIAS statement.

• The IDENTIFIER CHARACTER SET, DEFAULT CHARACTER SET, and
NATIONAL CHARACTER SET clauses of the SQL module header (Section
3.2) or the DECLARE MODULE statement.

• The SET IDENTIFIER CHARACTER SET statement, SET DEFAULT
CHARACTER SET statement, and the SET NATIONAL CHARACTER
SET statement for dynamic SQL.

• The IDENTIFIER CHARACTER SET, DEFAULT CHARACTER SET,
and NATIONAL CHARACTER SET clauses in the CREATE DATABASE
statement or the ALTER DATABASE statement.

F.4 Reserved Words Deprecated as Identifiers
The following lists contain reserved words from the:

• ANSI/ISO 1989 SQL standard

• ANSI/ISO 1992 SQL standard

• ANSI/ISO 1999 SQL standard

If these reserved words are used as identifiers without double quotation marks
("), SQL flags their use as being noncompliant with the ANSI/ISO 1989
standard and issues a deprecated feature message.

Oracle Rdb does not recommend using reserved words as identifiers because
this capability is a deprecated feature and might not be supported in future
versions of SQL. However, if you must use reserved words as identifiers, then
you must enclose them within double quotation marks to be compliant with the

Obsolete SQL Syntax F–9

ANSI/ISO 1989 standard. SQL does not allow lowercase letters, spaces, or tab
stops within the double quotation marks.

For example, if you want to use the ANSI/ISO 1989 reserved word SELECT as
a table identifier, the statement would be written as follows:

SELECT * FROM "SELECT";

F.4.1 ANSI/ISO 1989 SQL Standard Reserved Words

ALL AND ANY

AS ASC AUTHORIZATION

AVG BEGIN BETWEEN

BY CHAR CHARACTER

CHECK CLOSE COBOL

COMMIT CONTINUE COUNT

CREATE CURRENT CURSOR

DEC DECIMAL DECLARE

DEFAULT DELETE DESC

DISTINCT DOUBLE END

ESCAPE EXEC EXISTS

FETCH FLOAT FOR

FOREIGN FORTRAN FOUND

FROM GO GOTO

GRANT GROUP HAVING

IN INDICATOR INSERT

INT INTEGER INTO

IS KEY LANGUAGE

LIKE MAX MIN

MODULE NOT NULL

NUMERIC OF ON

OPEN OPTION OR

ORDER PASCAL PLI

PRECISION PRIMARY PRIVILEGES

PROCEDURE PUBLIC REAL

REFERENCES ROLLBACK SCHEMA

F–10 Obsolete SQL Syntax

SECTION SELECT SET

SMALLINT SOME SQL

SQLCODE SQLERROR SUM

TABLE TO UNION

UNIQUE UPDATE USER

VALUES VIEW WHENEVER

WHERE WITH WORK

F.4.2 ANSI/ISO 1992 SQL Standard Reserved Words
In addition to the reserved words listed for the ANSI/ISO 1989 standard, the
ANSI/ISO SQL standard also includes the following reserved words:

ABSOLUTE ACTION ADD

ALLOCATE ALTER ARE

ASSERTION AT BIT

BIT_LENGTH BOTH CASCADE

CASCADED CASE CAST

CATALOG CHAR_LENGTH CHARACTER_LENGTH

COALESCE COLLATE COLLATION

COLUMN CONNECT CONNECTION

CONSTRAINT CONSTRAINTS CONVERT

CORRESPONDING CROSS CURRENT_DATE

CURRENT_TIME CURRENT_TIMESTAMP CURRENT_USER

DATE DAY DEALLOATE

DEFERRABLE DEFERRED DESCRIBE

DESCRIPTOR DIAGNOSTICS DISCONNECT

DOMAIN DROP ELSE

END-EXEC EXCEPT EXCEPTION

EXECUTE EXTERNAL EXTRACT

FALSE FIRST FULL

GET GLOBAL HOUR

IDENTITY IMMEDIATE INITIALLY

INNER INPUT INSENSITIVE

INTERSECT INTERVAL ISOLATION

Obsolete SQL Syntax F–11

JOIN LAST LEADING

LEFT LEVEL LOCAL

LOWER MATCH MINUTE

MONTH NAMES NATIONAL

NATURAL NCHAR NEXT

NO NULLIF OCTET_LENGTH

ONLY OUTER OUTPUT

OVERLAPS PAD PARTIAL

POSITION PREPARE PRESERVE

PRIOR READ RELATIVE

RESTRICT REVOKE RIGHT

ROWS SCROLL SECOND

SESSION SESSION_USER SIZE

SPACE SQLSTATE SUBSTRING

SYSTEM_USER TEMPORARY THEN

TIME TIMESTAMP TIMEZONE_HOUR

TIMEZONE_MINUTE TRAILING TRANSACTION

TRANSLATE TRANSLATION TRIM

TRUE UNKNOWN UPPER

USAGE USING VALUE

VARCHAR VARYING WHEN

WRITE YEAR ZONE

F.4.3 ANSI/ISO 1999 SQL Standard Reserved Words
In addition to the reserved words listed for the ANSI/ISO 1989 standard and
the ANSI/ISO SQL 1992 standard, the ANSI/ISO SQL 1999 standard includes
the following reserved words.

ADMIN AFTER AGGREGATE

ALIAS ARRAY BEFORE

BINARY BLOB BOOLEAN

BREADTH CALL CLASS

CLOB COMPLETION CONDITION

CONSTRUCTOR CUBE CURRENT_PATH

F–12 Obsolete SQL Syntax

CURRENT_ROLE CYCLE DATA

DEPTH DEREF DESTROY

DESTRUCTOR DETERMINISTIC DICTIONARY

DO DYNAMIC EACH

ELSEIF EQUALS EVERY

EXIT FREE FUNCTION

GENERAL GROUPING HANDLER

HOST IF IGNORE

INITIALIZE INOUT ITERATE

LARGE LATERAL LEAVE

LESS LIMIT LIST

LOCALTIME LOCALTIMESTAMP LOCATOR

LONG LOOP MAP

MODIFIES MODIFY NCLOB

NEW NONE NUMBER

OBJECT OFF OLD

OPERATION ORDINALITY OUT

PARAMETER PARAMETERS PATH

POSTFIX PREFIX PREORDER

RAW READS RECURSIVE

REDO REF REFERENCING

REPEAT RESIGNAL RESULT

RETURN RETURNS ROLE

ROLLUP ROUTINE ROW

SAVEPOINT SCOPE SEARCH

SENSITIVE SEQUENCE SETS

SIGNAL SIMILAR SPECIFIC

SPECIFICTYPE SQLEXCEPTION SQLWARNING

START STATEMENT STATIC

STRUCTURE TERMINATE THAN

Obsolete SQL Syntax F–13

TREAT TRIGGER TYPE

UNDER UNDO UNNEST

UNTIL VARIABLE WHILE

WITHOUT

F.4.4 Words From ANSI/ISO SQL3 Draft Standard No Longer Reserved
In previous releases, the following words were listed as reserved words
according to the ANSI/ISO SQL3 draft standard but did not become part of
the final ANSI/ISO 1999 SQL standard. The following words are no longer
reserved by Oracle Rdb as previously documented:

ACTOR ASYNC ELEMENT

INSTEAD MOVE MULTISET

NEW_TABLE OID OLD_TABLE

OPERATORS OTHERS PENDANT

PRIVATE PROTECTED REPRESENTATION

TEMPLATE TEST THERE

TUPLE VARIANT VIRTUAL

VISIBLE WAIT

F.5 Punctuation Changes
The following changes apply to punctuation marks used in SQL.

F.5.1 Single Quotation Marks Required for String Literals
Use single (’) instead of double (") quotation marks to delimit a string
literal. SQL flags literals enclosed within double quotation marks with
an informational, compile-time, diagnostic message stating that this is
nonstandard usage. This message will appear even when you have specified
that SQL not notify you of syntax that is not ANSI/ISO SQL standard.

F.5.2 Double Quotation Marks Required for ANSI/ISO SQL Delimited
Identifiers

The leftmost name pair in a qualified name for a multischema object is
a delimited identifier. You must enclose a delimited identifier within
double quotation marks and use only uppercase characters. You must
enable ANSI/ISO SQL quoting rules to use delimited identifiers. For more
information, see Section 2.2.11.

F–14 Obsolete SQL Syntax

F.5.3 Colons Required Before Host Language Variables in SQL Module
Language

In SQL module language statements, Oracle Rdb recommends that you precede
parameters with a colon (:) to distinguish them from column or table names.
These colons are currently optional in SQL, but are required by the ANSI/ISO
SQL standard. SQL may require these colons in a future version of Oracle
Rdb.

F.6 Suppressing Diagnostic Messages
In interactive SQL, use the SET WARNING NODEPRECATE statement
to suppress the diagnostic messages about deprecated features. For more
information, see the SET Statement.

If you are using the SQL precompiler, you can suppress the diagnostic
messages about deprecated features by using the
SQLOPTIONS=WARN=(NODEPRECATE) qualifier in the precompiler
command line. For details, see Section 4.3.

If you are using SQL module language, you can suppress the diagnostic
messages about deprecated features by using the WARN=(NODEPRECATE)
qualifier in the module language command line. For details, see Section 3.6.

Obsolete SQL Syntax F–15

G
Oracle RDBMS Compatibility

G.1 Oracle RDBMS Functions
SQL functions have been added to the OpenVMS Oracle Rdb SQL interface for
convergence with Oracle SQL. Complete descriptions of these functions can be
found in the Oracle Server SQL Language Reference Manual.

G.1.1 Built-In Oracle SQL Functions
Table G–1 describes the new functions that are built into the Oracle Rdb SQL
interface:

Table G–1 Built-In Oracle SQL Functions

Function Name Description

ABS (n) Returns the absolute value of n.

(continued on next page)

Oracle RDBMS Compatibility G–1

Table G–1 (Cont.) Built-In Oracle SQL Functions

Function Name Description

CONCAT (s1,s2) Returns s1 concatenated with s2.

CONCAT is functionally equivalent to the concatenation operator (| |) in
Oracle Rdb. For example:

SQL> SELECT DISTINCT
cont> CONCAT (
cont> CONCAT (
cont> CONCAT (e.last_name, ’has a ’),
cont> d.degree),
cont> ’ degree’)
cont> FROM employees e, degrees d
cont> WHERE e.employee_id = d.employee_id
cont> LIMIT TO 5 ROWS;

Ames has a MA degree
Ames has a PhD degree
Andriola has a MA degree
Andriola has a PhD degree
Babbin has a MA degree
5 rows selected

CONVERT (str, dest_char_set) Converts a character string to the specified character set.

You cannot specify the source character set as you can with Oracle. dest_
char_set must be a character set supported by Oracle Rdb.

For example:

SQL> SELECT CONVERT (english, RDB$SHIFT_JIS)
cont> FROM colours;

Black
White
Blue
Red
Yellow
Green
6 rows selected

(continued on next page)

G–2 Oracle RDBMS Compatibility

Table G–1 (Cont.) Built-In Oracle SQL Functions

Function Name Description

DECODE (expr,srch1,res1, [,srch2,res2, . . .
,srchn,resn] [,default])

Compares expr to srch1 through srchn until a match is found. When a
match is found, DECODE returns the corresponding result in resn. If no
match is found, DECODE returns the default if specified, null if not. For
example:

SQL> SELECT employee_id, last_name, first_name,
cont> DECODE (status_code, ’1’, ’Full time’,
cont> ’2’, ’Part time’)
cont> FROM employees
cont> LIMIT TO 5 ROWS;
EMPLOYEE_ID LAST_NAME FIRST_NAME
00165 Smith Terry Part time
00190 O’Sullivan Rick Full time
00187 Lasch Stan Full time
00169 Gray Susan Full time
00176 Hastings Norman Full time
5 rows selected

GREATEST (v1,v2) Returns the greater of v1 or v2.

LEAST (v1,v2) Returns the lessor of v1 or v2.

LENGTH (str) Returns the length of str in characters.

LENGTHB (str) Returns the length of str in bytes.

ROUND (n[,m]) Returns n rounded to m places right of the decimal point. m can be
negative to round off digits left of the decimal point. m must be an integer.

SYSDATE Returns the current date and time. Requires no arguments.

SYSDATE is a synonym for CURRENT_TIMESTAMP. As with CURRENT_
TIMESTAMP, the return result of SYSDATE is affected by the setting of
the SET DEFAULT DATE FORMAT statement as shown in the following
example:

SQL> SET DEFAULT DATE FORMAT ’SQL99’
SQL> SELECT SYSDATE, CURRENT_TIMESTAMP
cont> FROM RDB$DATABASE;

1995-08-21 15:21:05.29 1995-08-21 15:21:05.29
1 row selected
SQL> SET DEFAULT DATE FORMAT ’VMS’
SQL> SELECT SYSDATE, CURRENT_TIMESTAMP
cont> FROM RDB$DATABASE;

21-AUG-1995 15:21:24.83 21-AUG-1995 15:21:24.83
1 row selected

TRUNC (n[,m]) Returns n truncated to m decimal places. m can be negative to truncate
(make zero) m digits to the left of the decimal point.

Oracle RDBMS Compatibility G–3

G.1.2 Optional Oracle SQL Functions
Optionally, you can install the functions listed in Table G–2 in your database
from interactive SQL as shown in the following examples.
The file is named SQL_FUNCTIONSnn.SQL, where ‘‘nn’’ is the version
number. For example, use the following statement:

SQL> ATTACH ’FILENAME mydatabase’;
SQL> @SYS$LIBRARY:SQL_FUNCTIONS71.SQL

If you wish to use a character set other than DEC_MCS with the installable
functions, you must first define the RDB$ORACLE_SQLFUNC_VCHAR_DOM
domain as a character type using the desired character set before executing
the preceding statements. Similarly, if you wish to use a date data type other
than DATE VMS with the installable functions, you must first define the
RDB$ORACLE_SQLFUNC_DATE_DOM domain as a date data type before
executing the preceding statements.

For example,

SQL> ATTACH ’FILENAME mydatabase’;
SQL> CREATE DOMAIN RDB$ORACLE_SQLFUNC_VCHAR_DOM VARCHAR(2000)
cont> CHARACTER SET KANJI;
SQL> CREATE DOMAIN RDB$ORACLE_SQLFUNC_DATE_DOM DATE ANSI;
SQL> @SYS$LIBRARY:SQL_FUNCTIONS71.SQL

If you choose, you may remove the installable functions from your database
at a later time. However, you must release any dynamic SQL statements and
disconnect any sessions that reference any of these functions before you can
remove the functions. Use the following statements from interactive SQL if
you wish to remove the installable functions from your database:

SQL> ATTACH ’FILENAME mydatabase’;
SQL> @SYS$LIBRARY:SQL_FUNCTIONS_DROP71.SQL

The file SYS$LIBRARY:SQL_FUNCTIONS_DROPnn.SQL, where ‘‘nn’’ is the
version number.

Table G–2 gives a brief description of each of the functions that you can
optionally install in your database.

G–4 Oracle RDBMS Compatibility

Table G–2 Optional Oracle SQL Functions

Function Name Description Restrictions

ADD_MONTHS (d,n) Returns the date d plus n
months.

d must be of the same
date data type as
the RDB$ORACLE_
SQLFUNC_DATE_DOM
domain, which is bound
when you install the
Oracle SQL functions.

ASCII (str) Returns the decimal
representation of the first
character of its argument.

str must be of the
same character set as
the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which is
bound when you install
the Oracle SQL functions.

CEIL (n) Returns the smallest
integer greater than or
equal to n.

CHR (n) Returns the character
having the binary
equivalent to n.

The returned value is
of type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM, the character set of
which is bound when you
install the Oracle SQL
functions. In addition,
only 1 octet (byte) of data
is encoded.

COS (n) Returns the cosine of n (an
angle expressed in radians).

COSH (n) Returns the hyperbolic
cosine of n (an angle
expressed in radians).

EXP (n) Returns e raised to the nth
power (e=2.71828183 . . .).

FLOOR (n) Returns the largest integer
equal to or less than n.

(continued on next page)

Oracle RDBMS Compatibility G–5

Table G–2 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

HEXTORAW (str) Converts its argument
containing hexadecimal
digits to a raw character
value.

str must be of the
same character set as
the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which is
bound when you install
the Oracle SQL functions.
The value returned is
of type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM.

INITCAP (str) Returns the string
argument, with the first
letter of each word in
uppercase, all other letters
in lowercase. Words
are delimited by non-
alphanumeric characters.

str must be of the
same character set as
the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which is
bound when you install
the Oracle SQL functions.
The value returned is
of type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM.

INSTR (s1,s2[,n[,m]]) Searches s1 beginning
with its nth character
and returns the character
position of the mth
occurrence of s2 or 0 if
s2 does not occur m times.
If n < 0, the search starts at
the end of s1.

s1 and s2 must be of
the same character set
as the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which
is bound when you
install the Oracle SQL
functions. If either n or
m is omitted, they default
to 1.

(continued on next page)

G–6 Oracle RDBMS Compatibility

Table G–2 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

INSTRB (s1,s2[,n[,m]]) Searches s1 beginning with
its nth octet and returns
the octet position of the mth
occurrence of s2 or 0 if s2
does not occur m times. If n
< 0, the search starts at the
end of s1.

s1 and s2 must be of
the same character set
as the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which
is bound when you
install the Oracle SQL
functions. If either n or
m is omitted, they default
to 1.

LAST_DAY (d) Returns the last day of the
month that contains d.

d must be of the same
date data type as
the RDB$ORACLE_
SQLFUNC_DATE_DOM
domain, which is bound
when you install the
Oracle SQL functions.
The value returned is
of type RDB$ORACLE_
SQLFUNC_DATE_DOM.

LN (n) Returns the natural
logarithm of n where n
is greater than 0.

LOG (m,n) Returns the logarithm base
m of n. The base m can be
any positive number other
than 0 or 1 and n can be
any positive number.

LPAD (s,l,p) Returns s left-padded to
length l with the sequence
of characters in p. If s is
longer than l, this function
returns that portion of s
that fits in l.

s and p must be of the
same character set as
the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which is
bound when you install
the Oracle SQL functions.
The value returned is
of type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM. There is no default
for p as with Oracle.

(continued on next page)

Oracle RDBMS Compatibility G–7

Table G–2 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

LTRIM (s1[,s2]) Removes characters from
the left of s1, with initial
characters removed up to
the first character not in s2.

s1 and s2 must be of
the same character set
as the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which is
bound when you install
the Oracle SQL functions.
The value returned is
of type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM. If omitted,s2
defaults to space.

MOD (m,n) Returns the remainder of m
divided by n. Returns m if
n is 0.

MONTHS_BETWEEN
(d1,d2)

Returns the number of
months between dates d1
and d2.

d1 and d2 must be of
the same date data type
as the RDB$ORACLE_
SQLFUNC_DATE_DOM
domain, which is bound
when you install the
Oracle SQL functions.

NEW_TIME (d1,z1,z2) Returns the date and time
in time zone z2 when the
date and time in time zone
z1 is d. Time zones z1 and
z2 can be: AST, ADT, BST,
BDT, CST, CDT, EST, EDT,
GMT, HST, HDT, MST,
MDT, NST, PST, PDT, YST,
or YDT.

d1 must be of the
same date data type
as the RDB$ORACLE_
SQLFUNC_DATE_DOM
domain, which is bound
when you install the
Oracle SQL functions.
z1 and z2 must be of
the same character set
as the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which
is also bound when
you install the Oracle
SQL functions. The
value returned is of
type RDB$ORACLE_
SQLFUNC_DATE_DOM.

(continued on next page)

G–8 Oracle RDBMS Compatibility

Table G–2 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

NEXT_DAY (d,dayname) Returns the date of the
first weekday named by
dayname that is later than
the date d.

d must be of the same
date data type as
the RDB$ORACLE_
SQLFUNC_DATE_DOM
domain, which is bound
when you install the
Oracle SQL functions.
dayname must be of
the same character set
as the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which
is also bound when
you install the Oracle
SQL functions. The
value returned is of
type RDB$ORACLE_
SQLFUNC_DATE_DOM.

POWER (m,n) Returns m raised to the
nth power. The base m
and the exponent n can
be any number but if m
is negative, n must be an
integer.

RAWTOHEX (str) Converts its raw argument
to a character value
containing its hexadecimal
equivalent.

str must be of the
same character set as
the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which
is also bound when
you install the Oracle
SQL functions. The
value returned is of
type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM.

(continued on next page)

Oracle RDBMS Compatibility G–9

Table G–2 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

REPLACE (s1[,s2[,s3]]) Returns s1 with every
occurrence of s2 replaced by
s3.

s1, s2, and s3 must be of
the same character set
as the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which is
bound when you install
the Oracle SQL functions.
The value returned is
of type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM. If omitted, s2 and
s3 default to an empty
string.

RPAD (s[,l[,p]]) Returns s left-padded to
length l with the sequence
of characters in p. If s is
longer than l, this function
returns that portion of s
that fits in l.

s and p must be of the
same character set as
the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which
is also bound when
you install the Oracle
SQL functions. The
value returned is of
type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM. If omitted, p
defaults to a space.

RTRIM (s1[,s2]) Returns s2 with final
characters after the last
character not in s2.

s1 and s2 must be of
the same character set
as the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which
is also bound when
you install the Oracle
SQL functions. The
value returned is of
type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM. If omitted, s2
defaults to a space.

(continued on next page)

G–10 Oracle RDBMS Compatibility

Table G–2 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

SIGN (n) If n < 0, the function
returns -1. If n = 0, the
function returns 0. If n > 0,
the function returns 1.

SIN (n) Returns the sine of n (an
angle expressed in radians).

SINH (n) Returns the hyperbolic sine
of n (an angle expressed in
radians).

SQRT (n) Returns the square root of
n. The value of n cannot be
negative. SQRT returns a
double precision result.

SUBSTR (s[,p[,l]]) Returns a portion of s, l
characters long, beginning
at character position p. If p
is negative, SUBSTR counts
backward from the end of s.

s must be of the
same character set as
the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which
is also bound when
you install the Oracle
SQL functions. The
value returned is of
type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM. If omitted, l
defaults to zero (0).

SUBSTRB (s[,p[,l]]) Same as SUBSTR, except
p and l are expressed in
octets (bytes) rather than
characters.

s must be of the
same character set as
the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which
is also bound when
you install the Oracle
SQL functions. The
value returned is of
type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM. If omitted, l
defaults to zero (0).

(continued on next page)

Oracle RDBMS Compatibility G–11

Table G–2 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

TAN (n) Returns the tangent of
n (an angle expressed in
radians).

TANH (n) Returns the hyperbolic
tangent of n (an angle
expressed in radians).

G.2 Oracle Style Outer Join
Oracle Rdb supports the SQL Database Language Standard syntax for
performing outer join between two or more tables, namely the LEFT, RIGHT,
and FULL OUTER JOIN clauses. Oracle Rdb also supports alternative syntax
and semantics that conform to those available in Oracle RDMS SQL language
to enhance the compatibility between these two products. The special operator
(+) can be placed in the WHERE clause to instruct SQL to join tables using
outer join semantics.

An outer join extends the result of a simple join. An outer join returns all
rows that satisfy the join condition and those rows from one table for which no
rows from the other satisfy the join condition. Such rows are not returned by a
simple join. To write a query that performs an outer join of tables A and B and
returns all rows from A, apply the outer join operator (+) to all columns of B in
the join condition. For all rows in A that have no matching rows in B, Oracle
Rdb returns NULL for any select list expressions containing columns of B.

Outer join queries are subject to the following rules and restrictions:

• The (+) operator can appear only in the WHERE clause and can be applied
only to a column of a table or view.

• If A and B are joined by multiple join conditions, you must use the (+)
operator in all of these conditions. If you do not, Oracle Rdb will return
only the rows resulting from a simple join, but without a warning or error
to advise you that you do not have the results of an outer join.

• The (+) operator can be applied only to a column, not to an arbitrary
expression. However, an arbitrary expression can contain a column marked
with the (+) operator.

• A condition containing the (+) operator cannot be combined with another
condition using the OR logical operator.

G–12 Oracle RDBMS Compatibility

• A condition cannot use the IN comparison operator to compare a column
marked with the (+) operator with an expression.

• A condition cannot compare any column marked with the (+) operator with
a subquery.

If the WHERE clause contains a condition that compares a column from table
B with a constant, the (+) operator must be applied to the column so that
Oracle Rdb returns the rows from table A for which it has generated NULLs
for this column. Otherwise Oracle Rdb will return only the results of a simple
join.

In a query that performs outer joins of more than two pairs of tables, a single
table can be the NULL-generated table for only one other table. For this
reason, you cannot apply the (+) operator to columns of B in the join condition
for A and B and the join condition for B and C.

G.2.1 Outer Join Examples
The examples in this section extend the results of this inner join (Equijoin)
between EMP and DEPT tables.

SQL> SELECT ename, job, dept.deptno, dname
cont> FROM emp, dept
cont> WHERE emp.deptno = dept.deptno;
EMP.ENAME EMP.JOB DEPT.DEPTNO DEPT.DNAME
King President 10 Accounting
Blake Manager 30 Sales
Clark Manager 10 Accounting
Jones Manager 20 Research
Ford Analyst 20 Research
Smith Clerk 20 Research
Allen Salesman 30 Sales
Ward Salesman 30 Sales
Martin Salesman 30 Sales
Scott Analyst 20 Research
Turner Salesman 30 Sales
Adams Clerk 20 Research
James Clerk 30 Sales
Miller Clerk 10 Accounting
14 rows selected

The following query uses an outer join to extend the results of this Equijoin
example above:

Oracle RDBMS Compatibility G–13

SQL> SELECT ename, job, dept.deptno, dname
cont> FROM emp, dept
cont> WHERE emp.deptno (+) = dept.deptno;
EMP.ENAME EMP.JOB DEPT.DEPTNO DEPT.DNAME
King President 10 Accounting
Clark Manager 10 Accounting
Miller Clerk 10 Accounting
Jones Manager 20 Research
Ford Analyst 20 Research
Smith Clerk 20 Research
Scott Analyst 20 Research
Adams Clerk 20 Research
Blake Manager 30 Sales
Allen Salesman 30 Sales
Ward Salesman 30 Sales
Martin Salesman 30 Sales
Turner Salesman 30 Sales
James Clerk 30 Sales
NULL NULL 40 Operations
15 rows selected

In this outer join, Oracle Rdb returns a row containing the OPERATIONS
department even though no employees work in this department. Oracle Rdb
returns NULL in the ENAME and JOB columns for this row. The join query in
this example selects only departments that have employees.

The following query uses an outer join to extend the results of the preceding
example:

SQL> SELECT ename, job, dept.deptno, dname
cont> FROM emp, dept
cont> WHERE emp.deptno (+) = dept.deptno
cont> AND job (+) = ’Clerk’;
EMP.ENAME EMP.JOB DEPT.DEPTNO DEPT.DNAME
Miller Clerk 10 Accounting
Smith Clerk 20 Research
Adams Clerk 20 Research
James Clerk 30 Sales
NULL NULL 40 Operations
5 rows selected

In this outer join, Oracle Rdb returns a row containing the OPERATIONS
department even though no clerks work in this department. The (+) operator
on the JOB column ensures that rows for which the JOB column is NULL are
also returned. If this (+) were omitted, the row containing the OPERATIONS
department would not be returned because its JOB value is not ’CLERK’.

G–14 Oracle RDBMS Compatibility

SQL> SELECT ename, job, dept.deptno, dname
cont> FROM emp, dept
cont> WHERE emp.deptno (+) = dept.deptno
cont> AND job = ’Clerk’;
EMP.ENAME EMP.JOB DEPT.DEPTNO DEPT.DNAME
Miller Clerk 10 Accounting
Smith Clerk 20 Research
Adams Clerk 20 Research
James Clerk 30 Sales
4 rows selected

This example shows four outer join queries on the CUSTOMERS, ORDERS,
LINEITEMS, and PARTS tables. These tables are shown here:

SQL> SELECT custno, custname
cont> FROM customers
cont> ORDER BY custno;

CUSTNO CUSTNAME
1 Angelic Co
2 Believable Co
3 Cables R Us

3 rows selected
SQL>
SQL> SELECT orderno, custno, orderdate
cont> FROM orders
cont> ORDER BY orderno;

ORDERNO CUSTNO ORDERDATE
9001 1 1999-10-13
9002 2 1999-10-13
9003 1 1999-10-20
9004 1 1999-10-27
9005 2 1999-10-31

5 rows selected
SQL>
SQL> SELECT orderno, lineno, partno, quantity
cont> FROM lineitems
cont> ORDER BY orderno, lineno;

ORDERNO LINENO PARTNO QUANTITY
9001 1 101 15
9001 2 102 10
9002 1 101 25
9002 2 103 50
9003 1 101 15
9004 1 102 10
9004 2 103 20

7 rows selected
SQL>
SQL> SELECT partno, partname
cont> FROM parts
cont> ORDER BY partno;

PARTNO PARTNAME
101 X-Ray Screen

Oracle RDBMS Compatibility G–15

102 Yellow Bag
103 Zoot Suit

3 rows selected

The customer Cables R Us has placed no orders, and order number 9005 has
no line items.

The following outer join returns all customers and the dates they placed
orders. The (+) operator ensures that customers who placed no orders are also
returned:

SQL> SELECT custname, orderdate
cont> FROM customers, orders
cont> WHERE customers.custno = orders.custno (+)
cont> ORDER BY customers.custno, orders.orderdate;
CUSTOMERS.CUSTNAME ORDERS.ORDERDATE
Angelic Co 1999-10-13
Angelic Co 1999-10-20
Angelic Co 1999-10-27
Believable Co 1999-10-13
Believable Co 1999-10-31
Cables R Us NULL
6 rows selected

The following outer join builds on the result of the previous one by adding the
LINEITEMS table to the FROM clause, columns from this table to the select
list, and a join condition joining this table to the ORDERS table to the where_
clause. This query joins the results of the previous query to the LINEITEMS
table and returns all customers, the dates they placed orders, and the part
number and quantity of each part they ordered. The first (+) operator serves
the same purpose as in the previous query. The second (+) operator ensures
that orders with no line items are also returned:

SQL> SELECT custname, orderdate, partno, quantity
cont> FROM customers, orders, lineitems
cont> WHERE customers.custno = orders.custno (+)
cont> AND orders.orderno = lineitems.orderno (+)
cont> ORDER BY customers.custno, orders.orderdate, lineitems.partno;
CUSTOMERS.CUSTNAME ORDERS.ORDERDATE LINEITEMS.PARTNO LINEITEMS.QUANTITY
Angelic Co 1999-10-13 101 15
Angelic Co 1999-10-13 102 10
Angelic Co 1999-10-20 101 15
Angelic Co 1999-10-27 102 10
Angelic Co 1999-10-27 103 20
Believable Co 1999-10-13 101 25
Believable Co 1999-10-13 103 50
Believable Co 1999-10-31 NULL NULL
Cables R Us NULL NULL NULL
9 rows selected

G–16 Oracle RDBMS Compatibility

The following outer join builds on the result of the previous one by adding the
PARTS table to the FROM clause, the PARTNAME column from this table to
the select list, and a join condition joining this table to the LINEITEMS table
to the where_clause. This query joins the results of the previous query to the
PARTS table to return all customers, the dates they placed orders, and the
quantity and name of each part they ordered. The first two (+) operators serve
the same purposes as in the previous query. The third (+) operator ensures
that rows with NULL part numbers are also returned:

SQL> SELECT custname, orderdate, quantity, partname
cont> FROM customers, orders, lineitems, parts
cont> WHERE customers.custno = orders.custno (+)
cont> AND orders.orderno = lineitems.orderno (+)
cont> AND lineitems.partno = parts.partno (+)
cont> ORDER BY customers.custno, orders.orderdate, parts.partno;
CUSTOMERS.CUSTNAME ORDERS.ORDERDATE LINEITEMS.QUANTITY PARTS.PARTNAME
Angelic Co 1999-10-13 15 X-Ray Screen
Angelic Co 1999-10-13 10 Yellow Bag
Angelic Co 1999-10-20 15 X-Ray Screen
Angelic Co 1999-10-27 10 Yellow Bag
Angelic Co 1999-10-27 20 Zoot Suit
Believable Co 1999-10-13 25 X-Ray Screen
Believable Co 1999-10-13 50 Zoot Suit
Believable Co 1999-10-31 NULL NULL
Cables R Us NULL NULL NULL
9 rows selected

G.2.2 Oracle Server Predicate
The following notes apply when you use the Oracle server predicate:

• If tables A and B are joined by multiple join conditions, then the plus (+)
operator must be used in all these conditions.

• The plus operator can be applied only to a column, not to an arbitrary
expression. However, an arbitrary expression can contain a column marked
with the plus operator.

• A condition containing the plus operator cannot be combined with another
condition using the OR logical operator.

• A condition cannot use the IN comparison operator to compare a column
marked with the plus operator to another expression.

• A condition cannot compare a column marked with the plus operator to a
subquery.

Oracle RDBMS Compatibility G–17

• If the WHERE clause contains a condition that compares a column from
table B to a constant, then the plus operator must be applied to the column
such that the rows from table A for which Oracle Rdb has generated
NULLs for this column are returned.

• In a query that performs outer joins of more than two pairs of tables, a
single table can only be the null-generated table for one other table. For
this reason, you cannot apply the plus operator to the column of table B in
the join condition for tables A and B and the join condition for tables B and
C.

G–18 Oracle RDBMS Compatibility

H
Information Tables

H.1 Introduction to Information Tables
Information tables display internal information about storage areas, after-
image journals, row caches, database users, the database root, and database
character sets. Once the information tables are created, you can query them
with the SQL interface.

Information tables are special read-only tables that can be created in an Oracle
Rdb Release 7.1 database and used to retrieve database attributes that are not
stored in the existing relational tables. Information tables allow interesting
database information, which is currently stored in an internal format, to be
displayed as a relational table.

The script, INFO_TABLES.SQL, is supplied as a part of the Oracle Rdb kit.
The INFO_TABLES.SQL file is in the SQL$SAMPLE directory. Table H–1 lists
the information tables that are supported in Oracle Rdb Release 7.1.

Information Tables H–1

Table H–1 Supported Information Tables

Table Name Description

RDB$STORAGE_AREAS Displays information about the database storage
areas.

RDB$DATABASE_JOURNAL Displays information about the default journal.

RDB$CACHES Displays information about the database row caches.

RDB$DATABASE_ROOT Displays information about the database root.

RDB$JOURNALS Displays information about the database journal files.

RDB$DATABASE_USERS Displays information about the database users.

RDB$LOGICAL_AREAS Displays information about the logical areas.

RDB$CHARACTER_SETS Displays information about the Oracle Rdb character
sets.

RDB$NLS_CHARACTER_SETS Displays the mapping of Oracle NLS character sets to
Oracle Rdb character sets.

For additional information about these information tables on OpenVMS,
see the ORACLE_RDBnn topic and select the Information_Tables subtopic
(where nn is the version number if using multiversion) in the Oracle Rdb
command-line Help.

Examples
Example 1: Querying an information tables

The following example shows how to query one of the information tables
created by the INFO_TABLES.SQL script.

SQL> SELECT * FROM RDB$LOGICAL_AREAS WHERE RDB$LOGICAL_AREA_NAME=’JOBS’;
RDB$LOGICAL_AREA_ID RDB$AREA_ID RDB$RECORD_LENGTH RDB$THRESHOLD1_PERCENT
RDB$THRESHOLD2_PERCENT RDB$THRESHOLD3_PERCENT RDB$ORDERED_HASH_OFFSET

RDB$RECORD_TYPE RDB$LOGICAL_AREA_NAME
95 7 41 0

0 0 0
1 JOBS

1 row selected

Example 2: Queries to detect growth of storage area files

The database administrator can list storage areas where the current allocation
of an area has exceeded the initial allocation. This information can be vital
when managing performance in mixed areas. With mixed areas every storage
area extension causes extra I/O for HASHED index access.

H–2 Information Tables

SQL> select RDB$AREA_NAME as NAME edit using ’T(15)’,
cont> RDB$INITIAL_ALLOCATION as INITIAL edit using ’Z(9)’,
cont> RDB$CURRENT_ALLOCATION as CURRENT edit using ’Z(9)’,
cont> RDB$EXTEND_COUNT as EXTENDS edit using ’Z(9)’,
cont> RDB$LAST_EXTEND as LAST_EXT_DATE
cont> from RDB$STORAGE_AREAS
cont> where (RDB$CURRENT_ALLOCATION > RDB$INITIAL_ALLOCATION + 1)
cont> and (RDB$AREA_NAME <> ’ ’);
NAME INITIAL CURRENT EXTENDS LAST_EXT_DATE
RDB$SYSTEM 102 3724 15 14-AUG-2003 13:53:36.81
SALARY_HISTORY 270 1270 1 6-AUG-2003 11:47:11.00
2 rows selected

This query shows that the system area has extended by almost 37 percent since
the database was created. Why is that? Are developers creating tables without
mapping the data to user defined storage areas? Area SALARY_HISTORY is a
mixed area that has extended. The initial allocation is no longer adequate for
this area. Was there a period in August where a lot of data was inserted into
these areas? The database administrator can schedule maintenance time to
resize the SALARY_HISTORY storage area.

Note

The query adds one to the initial allocation to eliminate areas where
a spam page has been added and the current allocation is the initial
allocation plus one block. The comparison of RDB$AREA_NAME to a
blank space eliminates snapshot areas from the query.

A similar query that shows snapshot files that have grown beyond the initial
allocation is:

SQL> select RDB$AREA_FILE as SNAP_NAME edit using ’T(50)’,
cont> RDB$INITIAL_ALLOCATION as INITIAL edit using ’Z(9)’,
cont> RDB$CURRENT_ALLOCATION as CURRENT edit using ’Z(9)’
cont> from RDB$STORAGE_AREAS
cont> where (RDB$CURRENT_ALLOCATION > RDB$INITIAL_ALLOCATION)
cont> and (RDB$AREA_NAME = ’ ’);
SNAP_NAME INITIAL CURRENT
DKD300:[SQLUSER71]MF_PERS_DEFAULT.SNP;1 50 1623
DKD300:[SQLUSER71]DEPARTMENTS.SNP;1 10 5000
2 rows selected

Large snapshot files are mainly caused by old active transactions, or an initial
allocation size that was too small. This query gives the database administrator
pointer to an area that needs investigation. Queries such as these can be
executed at regular intervals to detect growth trends.

Information Tables H–3

Example 3: Comparing table cardinality with cache sizes

Queries can be run periodically to check that the allocated cache sizes are
adequate for the current table size. Know that a cache was too small for the
table and taking corrective action can reduce cache collisions.

SQL> select A.RDB$CACHE_NAME, A.RDB$CACHE_SIZE, B.RDB$CARDINALITY
cont> from RDB$CACHES A, RDB$RELATIONS B
cont> where A.RDB$CACHE_NAME = B.RDB$RELATION_NAME;
A.RDB$CACHE_NAME A.RDB$CACHE_SIZE B.RDB$CARDINALITY
EMPLOYEES 100 103
DEPARTMENTS 26 26
DEGREES 20 165
TOO_BIG 500 10000
TOO_SMALL 1000 100
5 rows selected

In this example the tables TOO_BIG and DEGREES can only cache 5 percent
and 12 percent respectively of the total table. Perhaps the cache size needs
to be increased? Conversely, table TOO_SMALL appears to have a cache far
too large. Maybe this cache was incorrectly configured or the table has shrunk
over time? The current cache size is probably wasting memory.

Example 4: Converting logical DBKEY areas to names

Tools such as RMU Verify or RMU Show Statistics often display a logical area
DBKEY. For example consider this output from a stall message screen in RMU
Show Statictics:

202003A5:5 16:25:18.51 waiting for record 79:155:6

The database administrator can use RMU /DUMP/LAREA=RDB$AIP to get
a list of all the logical areas and their area numbers. However, the following
simple query on the RDB$LOGICAL_AREAS information table can be used
instead.

SQL> select rdb$logical_area_id, rdb$area_id, rdb$logical_area_name
cont> from rdb$logical_areas
cont> where rdb$logical_area_id=79;
RDB$LOGICAL_AREA_ID RDB$AREA_ID RDB$LOGICAL_AREA_NAME

79 3 EMPLOYEES
1 row selected

The query shows that this stall is on table EMPLOYEES and it resides in
physical area number 3. The database administrator can use this information
to dump the database page.

$ RMU/DUMP/AREA=3/START=155/END=155/OUTPUT=t.t mf_personnel

H–4 Information Tables

H.2 Restrictions for Information Tables
The following restrictions apply to information tables:

• You cannot alter the information tables. The table names and column
names must remain unchanged.

• Documentation on what each bit in the flag fields represents is available
on OpenVMS. See the ORACLE_RDBnn topic and select the Information_
Tables subtopic (where nn is the version number if using multiversion) in
the Oracle Rdb command-line Help.

Information Tables H–5

I
System Tables

This appendix describes the Oracle Rdb system tables.

Oracle Rdb stores information about the database as a set of special system
tables. The system tables are the definitive source of Oracle Rdb metadata.
Metadata defines the structure of the database; for example, metadata defines
the fields that comprise a particular table and the fields that can index that
table.

The definitions of most system tables are standard and are likely to remain
constant in future versions of Oracle Rdb.

In each description for a particular system table, BLR refers to binary
language representation. This is low-level syntax used internally to represent
Oracle Rdb data manipulation operations.

The following sections describe the usage of system tables with respect to
particular versions of Oracle Rdb or in relation to other database constructs,
operations, or products.

I.1 Using Data Dictionary
Although you can store your data definitions in the data dictionary, the
database system refers only to the system tables in the database file itself for
these definitions. In a sense, the system tables are an internal data dictionary
for the database. This method improves performance as Oracle Rdb does not
have to access the data dictionary at run time.

I.2 Modifying System Tables
When you create a database, Oracle Rdb defines, populates, and manipulates
the system tables. As the user performs data definition operations on the
database, Oracle Rdb reads and modifies the system tables to reflect those
operations. You should not modify any of the Oracle Rdb system tables
using data manipulation language, nor should you define any domains
based on system table fields. However, you can use regular Oracle Rdb data
manipulation statements to retrieve the contents of the system tables. This

System Tables I–1

means that your program can determine the structure and characteristics of
the database by retrieving the fields of the system tables.

I.3 Updating Metadata
When you use the SQL SET TRANSACTION . . . RESERVING statement to
lock a set of tables for an Oracle Rdb operation, you normally exclude from
the transaction all the tables not listed in the RESERVING clause. However,
Oracle Rdb accesses and updates system tables as necessary, no matter which
tables you have locked with the SQL SET TRANSACTION statement.

When your transaction updates database metadata, Oracle Rdb reserves the
system tables involved in the update in the EXCLUSIVE share mode. Other
users are unable to perform data definition operations on these tables until you
complete your transaction. For example:

• When you refer to a domain (global field) in an update transaction that
changes data definitions, Oracle Rdb locks an index for the system table,
RDB$RELATION_FIELDS. No other users can refer to the same domain
until you commit your transaction.

• When you change a relation (table) or domain definition, Oracle Rdb locks
an index in the system table, RDB$FIELD_VERSIONS. No other users can
change table or global field definitions until you commit your transaction.

• When you change a table definition, Oracle Rdb locks an index in the
system table, RDB$RELATION_FIELDS. No other users can change tables
in the same index node until you commit your transaction.

I.4 LIST OF BYTE VARYING Metadata
Oracle Rdb has supported multiple segment LIST OF BYTE VARYING
data types for user-defined data. However in previous versions, Oracle Rdb
maintained its own LIST OF BYTE VARYING metadata columns as single
segments. This restricted the length to approximately 65530 bytes. An SQL
CREATE TRIGGER or CREATE MODULE statement could fail due to this
restriction.

This limit was lifted by changing the way Oracle Rdb stores its own metadata.

• For columns containing binary data, such as the binary representation of
query, routine, constraint, trigger action, computed by column, or query
outline, Oracle Rdb breaks the data into pieces that best fit the system
storage area page size. Thus, the segments are all the same size with a
possible small trailing segment.

I–2 System Tables

The LIST OF BYTE VARYING column value is no longer fragmented,
improving performance when reading system metadata.

• For columns containing text data such as the SQL source (for elements
such as triggers and views) and user-supplied comment strings, Oracle Rdb
breaks the text at line boundaries (indicated by ASCII carriage returns
and line feeds) and stores the text without the line separator. Thus, the
segments are of varying size with a possible zero length for blank lines.

An application can now easily display the LIST OF BYTE VARYING
column value and the application no longer needs to break up the single
text segment for printing.

No change is made to the LIST OF BYTE VARYING column values when
a database is converted (using the RMU Convert command, RMU Restore
command, or SQL EXPORT/IMPORT statements) from a previous version.

Applications that read the Oracle Rdb system LIST OF BYTE VARYING
column values must be changed to understand multiple segments. Applications
that do not read these system column values should see no change to previous
behavior. Tools such as the RMU Extract command and the SQL SHOW
and EXPORT statements handle both the old and new formats of the system
metadata.

I.5 Read Only Access
The following is a list of fields of various system tables that are set to read-only
access.

• RDB$ACCESS_CONTROL

• RDB$FLAGS

• RDB$MODULE_OWNER

• RDB$ROUTINE_OWNER

The following BASIC program uses an SQL Module to query system tables

System Tables I–3

PROGRAM SYSTEM_RELATION
! This BASIC program interactively prompts a user to enter a name
! of a system table (table). Next, the program calls an SQL
! Module which uses a cursor to read the system table that the
! user entered. Upon reading the fields (domains) of the system
! table, the program displays a message to the user as to whether
! the fields in a system table can be updated.
OPTION TYPE = EXPLICIT, SIZE = INTEGER LONG
ON ERROR GOTO ERR_ROUTINE
!
! Declare variables and constants
!
DECLARE STRING Column_name, Table_name
DECLARE INTEGER Update_yes, sqlcode
DECLARE INTEGER CONSTANT TRIM_BLANKS = 128, UPPER_CASE = 32
EXTERNAL SUB SET_TRANSACTION (LONG)
EXTERNAL SUB OPEN_CURSOR(LONG,STRING)
EXTERNAL SUB FETCH_COLUMN(LONG,STRING,INTEGER)
EXTERNAL SUB CLOSE_CURSOR(LONG)
EXTERNAL SUB COMMIT_TRANS (LONG)
!
! Prompt for table name
!
INPUT ’Name of Table’; Table_name
Table_name = EDIT$(Table_name, UPPER_CASE)
PRINT ’Starting query’
PRINT ’In ’; Table_name; ’ Table, columns:’
!
! Call the SQL module to start the transaction.
!
CALL SET_TRANSACTION(Sqlcode)
!
! Open the cursor.
!
CALL OPEN_CURSOR(Sqlcode, Table_name)
GET_LOOP:
WHILE (Sqlcode = 0)
!
! Fetch each column
!
CALL FETCH_COLUMN(Sqlcode, Column_name, Update_yes)

IF (Sqlcode = 0)
THEN

!
! Display returned column
!
PRINT ’ ’; EDIT$(Column_name, TRIM_BLANKS);
IF (update_yes = 1)
THEN

PRINT ’ can be updated’
ELSE

PRINT ’ cannot be updated’

I–4 System Tables

END IF
END IF

NEXT

ERR_ROUTINE:
IF Sqlcode = 100
THEN

PRINT "No more rows."
RESUME PROG_END

ELSE
PRINT "Unexpected error: ", Sqlcode, Err
RESUME PROG_END

END IF
PROG_END:
!
! Close the cursor, commit work and exit
!
CALL CLOSE_CURSOR(Sqlcode)
CALL COMMIT_TRANS(Sqlcode)
END PROGRAM

The following module provides the SQL procedures that are called by the
preceding BASIC program.

-- This SQL module provides the SQL procedures that are called by the
-- preceding BASIC program, system table

-- Header Information Section

MODULE SQL_SYSTEM_REL_BAS -- Module name
LANGUAGE BASIC -- Language of calling program
AUTHORIZATION SQL_SAMPLE -- Authorization ID

--
-- DECLARE Statements Section
--
DECLARE ALIAS FILENAME ’MF_PERSONNEL’ -- Declaration of the database.

DECLARE SELECT_UPDATE CURSOR FOR
SELECT RDB$FIELD_NAME, RDB$UPDATE_FLAG
FROM RDB$RELATION_FIELDS
WHERE RDB$RELATION_NAME = table_name
ORDER BY RDB$FIELD_POSITION

--
-- Procedure Section
--
-- Start a transaction.
PROCEDURE SET_TRANSACTION

SQLCODE;

System Tables I–5

SET TRANSACTION READ WRITE;

-- Open the cursor.
PROCEDURE OPEN_CURSOR

SQLCODE
table_name RDB$RELATION_NAME;

OPEN SELECT_UPDATE;

-- Fetch a row.
PROCEDURE FETCH_COLUMN

SQLCODE
field_name RDB$FIELD_NAME
update_flag RDB$UPDATE_FLAG;

FETCH SELECT_UPDATE INTO :field_name, :update_flag;

-- Close the cursor.
PROCEDURE CLOSE_CURSOR

SQLCODE;

CLOSE SELECT_UPDATE;

-- Commit the transaction.
PROCEDURE COMMIT_TRANS

SQLCODE;

COMMIT;

I.6 All System Tables
The Oracle Rdb system tables are as follows:

RDB$CATALOG_SCHEMA Contains the name and definition of each SQL
catalog and schema. This table is present only
in databases with the SQL multischema feature
enabled.

RDB$COLLATIONS The collating sequences used by this database.

RDB$CONSTRAINTS Name and definition of each constraint.

RDB$CONSTRAINT_RELATIONS Name of each table that participates in a given
constraint.

RDB$DATABASE Database-specific information.

RDB$FIELD_VERSIONS One row for each version of each column
definition in the database.

RDB$FIELDS Characteristics of each domain in the database.

RDB$GRANTED_PROFILES Description of roles and profiles granted to users
and other roles.

RDB$INDEX_SEGMENTS Columns that make up an index.

I–6 System Tables

RDB$INDICES Characteristics of the indexes for each table.

RDB$INTERRELATIONS Interdependencies of entities used in the
database.

RDB$MODULES Module definition as defined by a user, including
the header and declaration section.

RDB$OBJECT_SYNONYMS When synonyms are enabled, this system table
is created to describe the synonym name, type,
and target.

RDB$PARAMETERS Interface definition for each routine stored in
RDB$ROUTINES. Each parameter to a routine
(procedure or function) is described by a row in
RDB$PARAMETERS.

RDB$PRIVILEGES Protection for the database objects.

RDB$PROFILES Description of any profiles, roles or users in the
database.

RDB$QUERY_OUTLINES Query outline definitions used by the optimizer
to retrieve known query outlines prior to
optimization.

RDB$RELATION_CONSTRAINTS Lists all table-specific constraints.

RDB$RELATION_CONSTRAINT_
FLDS

Lists the columns that participate in unique,
primary, or foreign key declarations for table-
specific constraints.

RDB$RELATION_FIELDS Columns defined for each table.

RDB$RELATIONS Tables and views in the database.

RDB$ROUTINES Description of each function and procedure in
the database. The routine may be standalone or
part of a module.

RDB$SEQUENCES Characteristics of any sequences defined for the
database.

RDB$STORAGE_MAPS Characteristics of each storage map.

RDB$STORAGE_MAP_AREAS Characteristics of each partition of a storage
map.

RDB$SYNONYMS Connects an object’s user-specified name to
its internal database name. This table is only
present in databases with the SQL multischema
feature enabled.

RDB$TRIGGERS Definition of a trigger.

RDB$VIEW_RELATIONS Interdependencies of tables used in views.

RDB$WORKLOAD Collects workload information.

System Tables I–7

I.6.1 RDB$CATALOG_SCHEMA
The RDB$CATALOG_SCHEMA system table contains the name and definition
of each SQL catalog and schema. This table is present only in databases that
have the SQL multischema feature enabled. The following table provides
information on the columns of the RDB$CATALOG_SCHEMA system table.

Column Name Data Type Summary Description

RDB$PARENT_ID integer For a schema, this is the
RDB$CATALOG_SCHEMA_ID
of the catalog to which this schema
belongs. For a catalog, this column
is always 0.

RDB$CATALOG_SCHEMA_
NAME

char(31) The name of the catalog or schema.

RDB$CATALOG_SCHEMA_ID integer A unique identifier indicating
whether this is a catalog or a
schema.

Schema objects have positive
identifiers starting at 1 and
increasing. Catalog objects have
negative identifiers starting at -1
and decreasing. 0 is reserved.

RDB$DESCRIPTION list of byte
varying

A user-supplied description of the
catalog or schema.

RDB$SCHEMA_AUTH_ID char(31) The authorization identifier of the
creator of the schema.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$CREATED date vms Set when the schema or catalog is
created.

RDB$LAST_ALTERED date vms Set when SQL ALTER CATALOG
or ALTER SCHEMA statement is
used (future).

RDB$CATALOG_SCHEMA_
CREATOR

char(31) Creator of this schema or catalog.

I.6.2 RDB$COLLATIONS
The RDB$COLLATIONS system table describes the collating sequence to be
used in the database. The following table provides information on the columns
of the RDB$COLLATIONS system table.

I–8 System Tables

Column Name Data Type Summary Description

RDB$COLLATION_NAME char(31) Supplies the name by which the
database’s collating sequences are
known within the database.

RDB$COLLATION_SEQUENCE byte varying Internal representation of the
collating sequence.

RDB$DESCRIPTION byte varying A user-supplied description of the
collating sequence.

RDB$FLAGS integer A bit mask where the following bits
are set:

• Bit 0

If an ASCII collating sequence.

• Bit 1

If a DEC_MCS collating
sequence.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$CREATED date vms Set when the collating sequence is
created.

RDB$LAST_ALTERED date vms Reserved for future use.

RDB$COLLATION_CREATOR char(31) Creator of this collating sequence.

I.6.3 RDB$CONSTRAINTS
The RDB$CONSTRAINTS system table contains the name and definition of
each constraint. The following table provides information on the columns of
the RDB$CONSTRAINTS system table.

Column Name Data Type Summary Description

RDB$CONSTRAINT_NAME char(31) The system-wide unique name of
the constraint.

RDB$CONSTRAINT_BLR byte varying The BLR that defines the
constraint.

RDB$CONSTRAINT_SOURCE byte varying The user’s source for the constraint.

RDB$DESCRIPTION byte varying A user-supplied description of this
constraint.

System Tables I–9

Column Name Data Type Summary Description

RDB$EVALUATION_TIME integer A value that represents when a
constraint is evaluated, as follows:

• 0

At commit time (deferred
initially deferred).

• 1

At verb time (deferrable
initially immediate).

• 2

At verb time (not deferrable).

RDB$EXTENSION_PARAMETERS byte varying Reserved for future use.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$CREATED date vms Set when the constraint is created.

RDB$LAST_ALTERED date vms Reserved for future use.

RDB$CONSTRAINT_CREATOR char(31) Creator of this constraint.

RDB$FLAGS integer Flags.

RDB$FLAGS represents flags for RDB$CONSTRAINTS system table.

Bit Position Description

0 Currently disabled.

1 Currently enabled without validation.

I.6.4 RDB$CONSTRAINT_RELATIONS
The RDB$CONSTRAINT_RELATIONS system table lists all tables that
participate in a given constraint. The following table provides information on
the columns of the RDB$CONSTRAINT_RELATIONS system table.

Column Name Data Type Summary Description

RDB$CONSTRAINT_NAME char(31) The system-wide unique name of
the constraint.

RDB$RELATION_NAME char(31) The name of a table involved in the
constraint.

I–10 System Tables

Column Name Data Type Summary Description

RDB$FLAGS integer Flags.

RDB$CONSTRAINT_CONTEXT integer The context variable of the table
involved in the constraint.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$FLAGS represents flags for RDB$CONSTRAINT_RELATIONS system
table.

Bit Position Description

0 Reserved for future use.

1 Reserved for future use.

2 If the constraint is on the specified table.

3 If the constraint evaluates with optimization by dbkey lookup.

4 If the constraint checks for existence.

5 If the constraint checks for uniqueness.

6 If the constraint needs to evaluate on store of specified table row.

7 If the constraint need not evaluate on store of specified table row.

8 If the constraint needs to evaluate on erase of specified table row.

9 If the constraint need not evaluate on erase of specified table row.

I.6.5 RDB$DATABASE
The RDB$DATABASE system table contains information that pertains to the
overall database. This table can contain only one row. The following table
provides information on the columns of the RDB$DATABASE system table.

Column Name Data Type Summary Description

RDB$CDD_PATH char 256 The dictionary path name for the
database.

RDB$FILE_NAME char 255 Oracle Rdb returns the file
specification of the database root
file. 1

1The root file specification is not stored on disk (an RMU Dump command with the Areas qualifier
shows that this field is blank) and is only returned to queries at runtime. Therefore, the root file
specification remains correct after you use the RMU Move_Area, RMU Copy_Database, and RMU
Backup commands, and the SQL EXPORT and IMPORT statements.

System Tables I–11

Column Name Data Type Summary Description

RDB$MAJ_VER integer Derived from the database major
version.

RDB$MIN_VER integer Derived from the database minor
version.

RDB$MAX_RELATION_ID integer The largest table identifier
assigned. Oracle Rdb assigns
the next table an ID of MAX_
RELATION_ID + 1.

RDB$RELATION_ID integer The unique identifier of the
RDB$RELATIONS table. If you
drop a table, that identifier is not
assigned to any other table.

RDB$RELATION_ID_ROOT_
DBK

char(8) A pointer (database key or dbkey)
to the base of the RDB$REL_
REL_ID_NDX index on column
RDB$RELATION_ID.

RDB$RELATION_NAME_
ROOT_DBK

char(8) A pointer (dbkey) to the base of
the RDB$REL_REL_NAME_NDX
index on column RDB$RELATION_
NAME.

RDB$FIELD_ID integer The identifier of the
RDB$FIELD_VERSIONS table.

RDB$FIELD_REL_FLD_ROOT_
DBK

char(8) A pointer (dbkey) to the base
of the RDB$VER_REL_ID_
VER_NDX index on columns
RDB$RELATION_ID and
RDB$VERSION.

RDB$INDEX_ID integer The identifier of the RDB$INDICES
table.

RDB$INDEX_NDX_ROOT_DBK char(8) A pointer (dbkey) to the base of
the RDB$NDX_NDX_NAME_NDX
index on column RDB$INDEX_
NAME.

RDB$INDEX_REL_ROOT_DBK char(8) A pointer (dbkey) to the base of the
RDB$NDX_REL_NAM_NDX index
on column RDB$RELATION_ID.

RDB$INDEX_SEG_ID integer The identifier of the
RDB$INDEX_SEGMENTS table.

I–12 System Tables

Column Name Data Type Summary Description

RDB$INDEX_SEG_FLD_ROOT_
DBK

char(8) A pointer (dbkey) to the base of
the RDB$NDX_SEG_NAM_FLD_
POS_NDX index on columns
RDB$INDEX_NAME and
RDB$FIELD_POSITION.

RDB$SEGMENTED_STRING_
ID

integer The logical area ID that contains
the segmented strings.

RDB$ACCESS_CONTROL byte varying The access control policy for the
database.

RDB$DESCRIPTION byte varying A user-supplied description of the
database.

RDB$DATABASE_PARAMETERS byte varying Reserved for future use.

RDB$EXTENSION_PARAMETERS byte varying Reserved for future use.

RDB$FLAGS integer Flags.

RDBVMS$MAX_VIEW_ID integer The largest view identifier assigned
to the RDB$RELATION_ID column
in the RDB$RELATIONS system
table. Oracle Rdb assigns the next
view an ID of MAX_VIEW_ID + 1.

RDBVMS$SECURITY_AUDIT integer A bit mask that indicates the
privileges that will be audited for
the database, as specified in the
RMU Set Audit command.

RDBVMS$SECURITY_ALARM integer A bit mask that indicates the
privileges that will produce alarms
for the database, as specified in the
RMU Set Audit command.

RDBVMS$SECURITY_USERS byte varying An access control list that identifies
users who will be audited or who
will produce alarms for DAC
(discretionary access control) events
when DACCESS (discretionary
access) auditing is enabled for
specific database objects.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDBVMS$SECURITY_AUDIT2 integer Reserved for future use.

RDBVMS$SECURITY_ALARM2 integer Reserved for future use.

RDBVMS$CHARACTER_SET_
ID

integer Value is the character set ID used
for the identifier character set.

System Tables I–13

Column Name Data Type Summary Description

RDBVMS$CHARACTER_SET_
NATIONAL

integer Value is the character set ID
used for all NCHAR (also called
NATIONAL CHAR or NATIONAL
CHARACTER) data types and
literals.

RDBVMS$CHARACTER_SET_
DEFAULT

integer Value is the character set ID used
for the default character set.

RDB$MAX_ROUTINE_ID integer Maintains a count of the modules
and routines added to the database.
Value is 0 if no routines or modules
have been added to the database.

RDB$CREATED date vms Set when the database is created.

RDB$LAST_ALTERED date vms Set when SQL ALTER DATABASE
statement is used.

RDB$DATABASE_CREATOR char(31) Creator of this database.

RDB$DEFAULT_STORAGE_
AREA_ID

integer Default storage area used for
unmapped, persistent tables and
indices.

RDB$DEFAULT_TEMPLATE_
AREA_ID

integer Reserved for future use.

The following ALTER DATABASE clauses modify the RDB$LAST_ALTERED
column in the RDB$DATABASE system table:

• CARDINALITY COLLECTION IS {ENABLED | DISABLED}

• DICTIONARY IS [NOT] REQUIRED

• DICTIONARY IS NOT USED

• METADATA CHANGES ARE {ENABLED | DISABLED}

• MULTISCHEMA IS {ON | OFF}

• SECURITY CHECKING IS EXTERNAL (PERSONA SUPPORT IS
{ENABLED | DISABLED})

• SECURITY CHECKING IS INTERNAL (ACCOUNT CHECK IS
{ENABLED | DISABLED})

• SYNONYMS ARE ENABLED

• WORKLOAD COLLECTION IS {ENABLED | DISABLED}

I–14 System Tables

The following SQL statements modify the RDB$LAST_ALTERED column in
the RDB$DATABASE system table:

• GRANT statement

• REVOKE statement

• COMMENT ON DATABASE statement

RDB$FLAGS represents flags for RDB$DATABASE system table.

Bit Position Description

0 If dictionary required.

1 If ANSI protection used.

2 If database file is a CDD$DATABASE database.

3 Reserved for future use.

4 Reserved for future use.

5 Reserved for future use.

6 Multischema is enabled.

7 Reserved for future use.

8 System indexes use run length compression.

9 The optimizer saves workload in RDB$WORKLOAD system table.

10 The optimizer is not updating table and index cardinalities.

11 All metadata changes are disabled.

12 Oracle Rdb uses database for user and role names.

13 If security is internal, validate the UIC. If security is external then
this indicates that persona support is enabled.

14 Synonyms are supported.

15 Prefix cardinalities are not collected for system indexes.

16 If collecting, use full algorithm for system indexes.

17 Use sorted ranked index for system indexes.

I.6.6 RDB$FIELD_VERSIONS
The RDB$FIELD_VERSIONS system table is an Oracle Rdb extension. This
table contains one row for each version of each column definition in the
database. The following table provides information on the columns of the
RDB$FIELD_VERSIONS system table.

System Tables I–15

Column Name Data Type Summary Description

RDB$RELATION_ID integer The identifier for a table within the
database.

RDB$FIELD_ID integer An identifier used internally to
name the column represented by
this row.

RDB$FIELD_NAME char(31) The name of the column.

RDB$VERSION integer The version number for the table
definition to which this column
belongs.

RDB$FIELD_TYPE integer The data type of the column
represented by this row. This data
type must be interpreted according
to the rules for interpreting the
DSC$B_DTYPE field of class
S descriptors (as defined in the
OpenVMS Calling Standard).

Segmented strings require a unique
field type identifier. This identifier
is currently 261.

RDB$FIELD_LENGTH integer The length of the column
represented by this row. This
length must be interpreted
according to the rules for
interpreting the DSC$W_LENGTH
field within class S and SD
descriptors (as defined in the
OpenVMS Calling Standard).

RDB$OFFSET integer The byte offset of the column from
the beginning of the row.

I–16 System Tables

Column Name Data Type Summary Description

RDB$FIELD_SCALE integer For numeric data types, the
scale factor to be applied when
interpreting the contents of the
column represented by this row.

This scale factor must be
interpreted according to the rules
for interpreting the DSC$B_SCALE
field of class SD descriptors (as
defined in the OpenVMS Calling
Standard).

For date-time data types,
RDB$FIELD_SCALE is fractional
seconds precision. For other non-
numeric data types,
RDB$FIELD_SCALE is 0.

RDB$FLAGS integer Flags.

RDB$VALIDATION_BLR byte varying The BLR that represents the SQL
check constraint clause defined in
this version of the column.

RDB$COMPUTED_BLR byte varying The BLR that represents the SQL
clause, COMPUTED BY, defined in
this version of the column.

RDB$MISSING_VALUE byte varying The BLR that represents the SQL
clause, MISSING_VALUE, defined
in this version of the column.

RDB$SEGMENT_LENGTH integer The length of a segmented string
segment. For date-time interval
fields, the interval leading field
precision.

RDBVMS$COLLATION_NAME char(31) The name of the collating sequence
for the column.

RDB$ACCESS_CONTROL byte varying The access control list for the
column.

RDB$DEFAULT_VALUE2 byte varying The SQL default value.

RDBVMS$SECURITY_AUDIT integer A bit mask that indicates the
privileges that will be audited for
the database, as specified in the
RMU Set Audit command.

System Tables I–17

Column Name Data Type Summary Description

RDBVMS$SECURITY_ALARM integer A bit mask that indicates the
privileges that will produce alarms
for the database, as specified in the
RMU Set Audit command.

RDB$FIELD_SUB_TYPE integer A value that describes the data
subtype of RDB$FIELD_TYPE
as shown in the section for
RDB$FIELD_SUB_TYPE.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$FLAGS represents flags for RDB$FIELD_VERSIONS system table.

Bit Position Description

0 Not used.

1 Not used.

2 Not used.

3 Used by Oracle Rdb internally.

4 Set if column references a local temporary table (usually a
COMPUTED BY column).

5 Use SQL semantics for check constraint processing.

6 AUTOMATIC set on insert.

7 AUTOMATIC set on update.

8 If check constraint fails, use name in message.

9 Column is computed by an IDENTITY sequence.

10 View column is based on a read-only, or dbkey column.

I.6.7 RDB$PARAMETER_SUB_TYPE
For details, see the section RDB$FIELD_SUB_TYPE.

I.6.8 RDB$FIELD_SUB_TYPE
The following table lists the values for the RDB$FIELD_SUB_TYPE and the
RDB$PARAMETER_SUB_TYPE columns.

I–18 System Tables

RDB$FIELD_TYPE = DSC$K_DTYPE_ADT

RDB$FIELD_SUB_TYPE 1 Summary Description

Less than 0 Reserved for future use.
Equal to 0 Traditional OpenVMS timestamp, which includes

year, month, day, hour, minute, second.

7 DATE ANSI, which includes year, month, day.

56 TIME, which includes hour, minute, second.

63 TIMESTAMP, which includes year, month, day,
hour, minute, second.

513 INTERVAL YEAR.

514 INTERVAL MONTH.

515 INTERVAL YEAR TO MONTH.

516 INTERVAL DAY.

520 INTERVAL HOUR.

524 INTERVAL DAY TO HOUR.

528 INTERVAL MINUTE.

536 INTERVAL HOUR TO MINUTE.

540 INTERVAL DAY TO MINUTE.

544 INTERVAL SECOND.

560 INTERVAL MINUTE TO SECOND.

568 INTERVAL HOUR TO SECOND.

572 INTERVAL DAY TO SECOND.

RDB$FIELD_TYPE = DSC$K_DTYPE_T or DSC$K_DTYPE_VT

RDB$FIELD_SUB_TYPE Summary Description

Equal to 0 ASCII or DEC_MCS character set.
Greater than 0 Character set other than ASCII or DEC_MCS.

Less than 0 Special use of character data.

System Tables I–19

RDB$FIELD_TYPE = DSC$K_DTYPE_BLOB 2

RDB$FIELD_SUB_TYPE Summary Description

RDB$FIELD_TYPE = DSC$K_DTYPE_BLOB 2

RDB$FIELD_SUB_TYPE Summary Description

Less than 0 User-specified.
Equal to 0 Default.

Equal to 1 BLR (query) type.

Equal to 2 Character type.

Equal to 3 MBLR (definition) type.

Equal to 4 Binary type.

Equal to 5 OBLR (outline) type.

Greater than 5 Reserved for future use.

I.6.9 RDB$FIELDS
The RDB$FIELDS system table describes the global (generic) characteristics
of each domain in the database. There is one row for each domain in the
database. The following table provides information on the columns of the
RDB$FIELDS system table.

Column Name Data Type Summary Description

RDB$FIELD_NAME char(31) The name of the domain
represented by this row. Each
row within
RDB$FIELDS must have a unique
RDB$FIELD_NAME value.

RDB$FIELD_TYPE integer The data type of the domain
represented by this row. This data
type must be interpreted according
to the rules for interpreting the
DSC$B_DTYPE field of class
S descriptors (as defined in the
OpenVMS Calling Standard).

Segmented strings require a unique
field type identifier. This identifier
is 261.

I–20 System Tables

Column Name Data Type Summary Description

RDB$FIELD_LENGTH integer The length of the field represented
by this row. This length must
be interpreted according to the
rules for interpreting the DSC$W_
LENGTH field within class S
and SD descriptors (as defined
in OpenVMS Calling Standard).
For strings, this field contains the
length in octets (8-bit bytes), not in
characters.

RDB$FIELD_SCALE integer For numeric data types, the
scale factor to be applied when
interpreting the contents of the
field represented by this row.

This scale factor must be
interpreted according to the rules
for interpreting the DSC$B_SCALE
field of class SD descriptors (as
defined in the OpenVMS Calling
Standard). For date-time data
types, RDB$FIELD_SCALE is
fractional seconds precision. For
other non-numeric data types,
RDB$FIELD_SCALE is 0.

RDB$SYSTEM_FLAG integer A bit mask where the following bits
are set:

• If Bit 0 is clear, this is a user-
defined domain.

• If Bit 0 is set, this is a system
domain.

RDB$VALIDATION_BLR byte varying The BLR that represents the
validation expression to be checked
each time a column based on this
domain is updated.

RDB$COMPUTED_BLR byte varying The BLR that represents the
expression used to calculate a
value for the column based on this
domain.

System Tables I–21

Column Name Data Type Summary Description

RDB$EDIT_STRING varchar(255) The edit string used by interactive
SQL when printing the column
based on this domain. RDB$EDIT_
STRING can be null.

RDB$MISSING_VALUE byte varying The value used when the missing
value of the column based on this
domain is retrieved or displayed.
RDB$MISSING_VALUE does
not store any value in a column;
instead, it flags the column value
as missing.

RDB$FIELD_SUB_TYPE integer A value that describes the data
subtype of RDB$FIELD_TYPE as
shown in the RDB$FIELD_SUB_
TYPE section.

RDB$DESCRIPTION byte varying A user-supplied description of this
domain.

RDB$VALIDATION_SOURCE byte varying The user’s source text for the
validation criteria.

RDB$COMPUTED_SOURCE byte varying The user’s source used to calculate
a value at execution time.

RDB$QUERY_NAME char(31) The query name of this do-
main. Column attributes in
RDB$RELATION_FIELDS take
precedence over attributes in
RDB$FIELDS.

If the attribute value is missing in
RDB$RELATION_FIELDS, the
value from RDB$FIELDS is used.
RDB$QUERY_NAME can be null.

RDB$QUERY_HEADER byte varying The query header of the domain is
used by interactive SQL. Column
attributes in
RDB$RELATION_FIELDS take
precedence over attributes in
RDB$FIELDS.

If the attribute value is missing in
RDB$RELATION_FIELDS, the
value from RDB$FIELDS is used.

I–22 System Tables

Column Name Data Type Summary Description

RDB$DEFAULT_VALUE byte varying The default value used by non-
SQL interfaces when no value
is specified for a column during
a STORE clause. It differs from
RDB$MISSING_VALUE in that it
holds an actual column value.

Column attributes in
RDB$RELATION_FIELDS take
precedence over attributes in
RDB$FIELDS.

If the attribute value is missing in
RDB$RELATION_FIELDS, the
value from RDB$FIELDS is used.

RDB$SEGMENT_LENGTH integer The length of a segmented string
segment. For date-time interval
fields, the interval leading field
precision.

RDB$EXTENSION_PARAMETERS byte varying Reserved for future use.

RDB$CDD_NAME byte varying The fully qualified name of the
dictionary entity upon which the
domain definition is based, as
specified in the SQL clause, FROM
PATHNAME.

RDBVMS$COLLATION_NAME char(31) The name of the collating sequence
for the domain.

RDB$DEFAULT_VALUE2 byte varying The BLR for the SQL default value.
This value is used when no value
is provided in an SQL INSERT
statement.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$FLAGS integer Flags.

RDB$CREATED date vms Set when the domain is created.

RDB$LAST_ALTERED date vms Set when SQL ALTER DOMAIN
statement used.

RDB$FIELD_CREATOR char(31) Creator of this domain.

RDB$FLAGS represents flags for RDB$FIELDS system table.

System Tables I–23

Bit Position Description

0 A SQL CHECK constraint is defined on this domain.

1 AUTOMATIC set on insert.

2 AUTOMATIC set on update.

3 If check constraint fails, use name in message.

4 Column is computed an IDENTITY sequence.

5 View column is based on a read-only, or dbkey column.

I.6.10 RDB$GRANTED_PROFILES
The RDB$GRANTED_PROFILES system table contains information about
each profile, and role granted to other roles and users. The following table
provides information on the columns of the RDB$GRANTED_PROFILES
system table. See also the related RDB$PROFILES system table.

Column Name Data Type Summary Description

RDB$GRANTEE_PROFILE_ID integer This is a unique identifier gener-
ated for the parent RDB$PROFILES
row.

RDB$PROFILE_TYPE integer Class of profile information: role
(1), default role (2), profile (0).

RDB$PROFILE_ID integer Identification of the profile or role
granted to this user.

I.6.11 RDB$INDEX_SEGMENTS
The RDB$INDEX_SEGMENTS system table describes the columns that make
up an index’s key. Each index must have at least one column within the key.
The following table provides information on the columns of the RDB$INDEX_
SEGMENTS system table.

Column Name Data Type Summary Description

RDB$INDEX_NAME char(31) The name of the index of which this
row is a segment.

I–24 System Tables

Column Name Data Type Summary Description

RDB$FIELD_NAME char(31) The name of a column that
participates in the index key. This
column name matches the name in
the RDB$FIELD_NAME column
of the RDB$RELATION_FIELDS
table.

RDB$FIELD_POSITION integer The ordinal position of this key
segment within the total index
key. No two segments in the key
may have the same RDB$FIELD_
POSITION.

RDB$FLAGS integer A bit mask where Bit 0 is set for
descending segments, otherwise the
segments are ascending.

RDB$FIELD_LENGTH integer Shortened length of text for
compressed indexes.

RDBVMS$FIELD_MAPPING_
LOW

integer Shows the lower limit of the
mapping range.

RDBVMS$FIELD_MAPPING_
HIGH

integer Shows the higher limit of the
mapping range.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$CARDINALITY bigint Prefix cardinality for this and
all prior key segments (assumes
sorting by ordinal position).

I.6.12 RDB$INDICES
The RDB$INDICES system table contains information about indexes in the
database. The following table provides information on the columns of the
RDB$INDICES system table.

Column Name Data Type Summary Description

RDB$INDEX_NAME char(31) A unique index name.

RDB$RELATION_NAME char(31) The name of the table in which the
index is used.

System Tables I–25

Column Name Data Type Summary Description

RDB$UNIQUE_FLAG integer A value that indicates whether
duplicate values are allowed in
indexes, as follows:

• 0

If duplicate values are allowed.

• 1

If no duplicate values are
allowed.

RDB$ROOT_DBK char(8) A pointer to the base of the index.

RDB$INDEX_ID integer The identifier of the index.

RDB$FLAGS integer Flags.

RDB$SEGMENT_COUNT integer The number of segments in the key.

RDB$DESCRIPTION byte varying A user-supplied description of this
index.

RDB$EXTENSION_PARAMETERS byte varying Stores NODE SIZE value,
PERCENT FILL value, compression
algorithm, and compression run
length for this index. Also reserved
for other future use.

RDB$CARDINALITY bigint The number of unique entries for
a non-unique index. For a unique
index, the number is 0.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$CREATED date vms Set when the index is created.

RDB$LAST_ALTERED date vms Set when SQL ALTER INDEX
statement is used.

RDB$INDEX_CREATOR char(31) Creator of this index.

I–26 System Tables

Column Name Data Type Summary Description

RDB$KEY_CLUSTER_FACTOR bigint(7) Sorted Index: The ratio of the
number of clump changes that
occur when you traverse level-1
index nodes and the duplicate node
chains to the number of keys in the
index. This statistic is based on
entire index traversal. This means
last duplicate node of current key is
compared with first duplicate node
of next key for clump change.

Hash Index: The average number
of clump changes that occur when
you go from system record to hash
bucket to overflow hash bucket
(if fragmented), and traverse the
duplicate node chain for each key.
This statistic is based on per key
traversal.

RDB$DATA_CLUSTER_
FACTOR

bigint(7) Sorted Index: The ratio of the
number of clump changes that
occur between adjacent dbkeys
in duplicate chains of all keys to
the number of keys in the index.
For unique index, the dbkeys of
adjacent keys are compared for
clump change. This statistic is
based on entire index traversal.
This means last dbkey of current
key is compared with first dbkey of
next key for clump change.

Hashed Index: The average
number of clump changes that
occur between adjacent dbkeys in
a duplicate chain for each key. For
a unique index, this value will be
always 1. This statistic is based on
per key traversal.

RDB$INDEX_DEPTH integer Sorted Index: The depth of the
B-tree.

Hashed Index: This column is not
used for hashed indices and is left
as 0.

RDB$FLAGS represents flags for RDB$INDICES system table.

System Tables I–27

Bit Position Description

0 Hashed index.

1 Index segments are numeric with mapping values compression.

2 Hashed ordered index. (If bit is clear, hashed scattered.)

3 Reserved for future use.

4 Run-length compression.

5 Index is disabled or enabled deferred.

6 Build pending (enabled deferred).

7 Reserved for future use.

8 Reserved for future use.

9 Reserved for future use.

10 Reserved for future use.

11 If on, duplicates are compressed.

12 Sorted ranked index.

13 Prefix cardinalities disabled.

14 Use the full collection algorithm for prefix cardinality.

15 Index generated for a constraint when SET FLAGS ’AUTO_INDEX’
was enabled.

I.6.13 RDB$INTERRELATIONS
The RDB$INTERRELATIONS system table contains information that indicates
the interdependencies of objects in the database. The RDB$INTERRELATIONS
table can be used to determine if an object can be dropped or if some other
object depends upon its existence in the database. The following table provides
information on the columns of the RDB$INTERRELATIONS system table.

Column Name Data Type Summary Description

RDB$OBJECT_NAME char(31) The name of the object that cannot
be dropped or altered because it is
used by some other entity in the
database.

RDB$SUBOBJECT_NAME char(31) The name of the associated sub-
object that cannot be dropped
or altered because it is used by
another entity in the database.

I–28 System Tables

Column Name Data Type Summary Description

RDB$ENTITY_NAME1 char(31) The name of the entity that
depends on the existence of
the object identified by the
RDB$OBJECT_NAME and
RDB$SUBOBJECT_NAME.

RDB$ENTITY_NAME2 char(31) If used, the name of the entity,
together with RDB$ENTITY_
NAME1, that depends on the
existence of the object specified
in RDB$OBJECT_NAME and
RDB$SUBOBJECT_NAME.

RDB$USAGE char(31) The relationship among RDB$OBJECT_
NAME, RDB$SUBOBJECT_
NAME, RDB$ENTITY_NAME1,
and RDB$ENTITY_NAME2.

RDB$USAGE contains a short
description.

RDB$FLAGS integer Flags.

RDB$CONSTRAINT_NAME char(31) This column is the name of a
constraint that is referred to
from another system table. The
value in this column equates to a
value for the same column in the
RDB$CONSTRAINTS system table.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$FLAGS represents flags for RDB$INTERRELATIONS system table.

Bit Position Description

0 Entity is a module.

1 Object is a module.

2 Entity is a routine.

3 Object is a routine.

4 Entity is a trigger.

5 Object is a trigger.

6 Entity is a constraint.

7 Object is a constraint.

8 Reserved.

System Tables I–29

Bit Position Description

9 Reserved.

10 Reserved.

11 Reserved.

12 Reserved.

13 Reserved.

14 Entity is a sequence.

15 Object is a sequence.

I.6.14 RDB$MODULES
The RDB$MODULES system table describes a module as defined by a user. A
module can contain a stored procedure or an external function. Each module
has a header, a declaration section, and a series of routines. The header and
declaration section are defined in RDB$MODULES. (Each routine is defined
by an entry in RDB$ROUTINES.) A row is stored in the RDB$MODULES
table for each module that is defined by a user. The following table provides
information on the columns of the RDB$MODULES system table.

Column Name Data Type Summary Description

RDB$MODULE_NAME char(31) Name of the module.

RDB$MODULE_OWNER char(31) Owner of the module. If the module
is an invoker rights module, this
column is set to NULL. Otherwise,
definers username from this column
is used for definers rights checking.

RDB$MODULE_ID integer Unique identifier assigned to this
module by Oracle Rdb.

RDB$MODULE_VERSION char(16) Module version and checksum.
Allows runtime validation of
the module with respect to the
database.

RDB$EXTENSION_PARAMETERS byte varying Encoded information for module
level declarations.

RDB$MODULE_HDR_SOURCE byte varying Source of the module header as
provided by the definer.

RDB$DESCRIPTION byte varying Description of the module.

I–30 System Tables

Column Name Data Type Summary Description

RDB$ACCESS_CONTROL byte varying Access Control List (ACL) to control
access to the module. This value
can be NULL.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$CREATED date vms Set when the module is created.

RDB$LAST_ALTERED date vms Set when module is altered by the
ALTER, RENAME, DROP, GRANT
and REVOKE statements.

RDB$MODULE_CREATOR char(31) Creator of this module. Differentiates
between OWNER and AUTHORIZATION.

RDB$VARIABLE_COUNT integer Number of global variables.

I.6.15 RDB$OBJECT_SYNONYMS
The RDB$OBJECT_SYNONYMS system table is created with synonyms are
enabled to record the synonym name, type, and target. The following table
provides information on the columns of the RDB$OBJECT_SYNONYMS
system table.

Column Name Data Type Summary Description

RDB$CREATED date vms Time and date when synonym entry
was created.

RDB$LAST_ALTERED date vms Time and date when synonym entry
was last altered.

RDB$DESCRIPTION byte varying A user-supplied description of the
synonym.

RDB$EXTENSION_PARAMETERS byte varying Reserved for future use.

RDB$FLAGS integer Flags.

RDB$OBJECT_TYPE integer The type of synonym.

RDB$SYNONYM_NAME char(31) The synonym to be used by queries.
This name is unique within the
RDB$OBJECT_SYNONYMS
system table.

RDB$SYNONYM_VALUE char(31) name of the object for which the
synonym is defined.

RDB$SYNONYM_CREATOR char(31) Creator of the synonym entry.

RDB$FLAGS represents flags for RDB$OBJECT_SYNONYMS system table.

System Tables I–31

Bit Position Description

0 When set, this bit indicates that this synonym references another
synonym.

1 Reserved for future use.

2 Indicates that the synonym was created by RENAME statement.

I.6.16 RDB$PARAMETERS
The RDB$PARAMETERS system table defines the routine interface for each
routine stored in RDB$ROUTINES. Each parameter to a routine (procedure
or function) is described by a row in RDB$PARAMETERS. The following table
provides information on the columns of the RDB$PARAMETERS system table.

Column Name Data Type Summary Description

RDB$PARAMETER_NAME char(31) Name of the parameter.

RDB$PARAMETER_SOURCE char(31) Source (domain or table) to the
routine containing the parameter.

RDB$ROUTINE_ID integer Unique identifier assigned to the
routine containing this parameter
by Oracle Rdb.

RDB$ORDINAL_POSITION integer Position in parameter list.
Position 0 indicates function result
description.

RDB$PARAMETER_TYPE integer Data type of the parameter.

RDB$PARAMETER_SUB_TYPE integer A value that describes the data
subtype of RDB$PARAMETER_
TYPE as shown in RDB$FIELD_
SUB_TYPE section.

RDB$PARAMETER_LENGTH integer Length of the parameter.

RDB$PARAMETER_SCALE integer Scale of the data type.

RDB$PARAMETER_SEG_
LENGTH

integer The length of the segmented string
segment. For date-time interval
fields, the interval leading field
precision.

RDB$DEFAULT_VALUE2 byte varying Parameter default.

RDB$FLAGS integer Flags.

RDB$DESCRIPTION byte varying Description of the parameter.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$FLAGS represents flags for RDB$PARAMETERS system table.

I–32 System Tables

Bit Position Description

0 IN (read) INOUT (modify).

1 OUT (write) INOUT (modify).

2 Reserved for future use.

3 BY DESCRIPTOR (default is BY REFERENCE).

4 BY VALUE (Bit number 3 is ignored).

5 Reserved for future use.

6 Set if parameter mode is undefined.

If Bits 0 and 1 are both clear, then the parameter is the RETURN
TYPE of a function.

I.6.17 RDB$PRIVILEGES
The RDB$PRIVILEGES system table describes the protection for the database
objects. There is one row per grantor, grantee, and privileges combination per
entity in the database.

A row is stored in the RDB$PRIVILEGES table for each user who grants
another user privileges for a database object.

If the privilege for a database object was granted without the SQL GRANT
option, the row of the grantor and grantee is modified.

The privilege change takes effect at commit time of the command.

Note

The RDB$PRIVILEGES system table is used only in ANSI databases.

The following table provides information on the columns of the RDB$PRIVILEGES
system table.

Column Name Data Type Summary Description

RDB$SUBOBJECT_ID integer The id of the column or routine
for which protection is defined.
If protection is on a database,
module, table, or view, this field
is NULL. The value stored in this
column must be unique within the
database.

System Tables I–33

Column Name Data Type Summary Description

RDB$OBJECT_ID integer The id of the module, table,
sequence, or view for which
protection is defined. The column
is NULL if the protection is defined
for the database. The value stored
in this column must be unique
within the database.

RDB$GRANTOR integer The binary format UIC of the
person who defined or changed the
privileges. This is usually the UIC
of the person who executed the
protection command.

For an SQL IMPORT statement,
the UIC is that of the person who
originally defined the protection for
the user; not necessarily the person
who performed the SQL IMPORT
statement.

RDB$GRANTEE byte varying The binary format of the UICs of
the persons who hold privileges on
the database object.

RDB$PRIV_GRANT integer Specifies the access mask of
privileges that the grantee has
that he can grant to other users.

RDB$PRIV_NOGRANT integer Specifies the access mask of
privileges that the grantee has
that he can use himself but cannot
give to other users.

RDB$FLAGS integer Flags.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$FLAGS represents flags for RDB$PRIVILEGES system table.

Bit Position Description

0 Privilege is defined for a module and procedure.

1 The data is related to sequences.

I–34 System Tables

I.6.18 RDB$PROFILES
The RDB$PROFILES system table contains information about each profile,
user and role defined for the database. The following table provides
information on the columns of the RDB$PROFILES system table. See also
the related RDB$GRANTED_PROFILES system table.

Column Name Data Type Summary Description

RDB$CREATED date vms time and date when profile entry
was created.

RDB$LAST_ALTERED date vms time and date when profile entry
was last altered.

RDB$DESCRIPTION byte varying Comment for this entry.

RDB$EXTENSION_
PARAMETERS

byte varying Extra definitions such as default
transaction.

RDB$SYSTEM_FLAG integer Set to TRUE (1) if this is a system
define role or user, otherwise it
is set to FALSE (0). When the
RDB$SYSTEM_FLAG is set these
entries may not be deleted by a
DROP statement.

RDB$FLAGS integer Flags.

RDB$DEFINE_ACCESS integer Reserved for future use.

RDB$CHANGE_ACCESS integer Reserved for future use.

RDB$DELETE_ACCESS integer Reserved for future use.

RDB$PROFILE_ID integer This is a unique identifier
generated for each USER,
PROFILE and ROLE added to
the database.

RDB$PROFILE_TYPE integer Class of profile information: role
(1), user (3), profile (0).

RDB$PROFILE_NAME char(31) Name of the user, profile or role.
This name is unique within the
RDB$PROFILES table.

RDB$PROFILE_CREATOR char(31) Creator of entry.

RDB$FLAGS represents flags for RDB$PROFILES system table.

System Tables I–35

Bit Position Description

0 The user entry is disabled (ACCOUNT LOCK).

1 Means that the user/role is identified externally.

2 Reserved for future use.

3 This is a system role.

4 Means the user is assigned a profile.

I.6.19 RDB$QUERY_OUTLINES
The RDB$QUERY_OUTLINES system table contains query outline definitions
that are used by the optimizer to retrieve known query outlines prior to
optimization. The following table provides information on the columns of the
RDB$QUERY_OUTLINES system table.

Column Name Data Type Summary Description

RDB$OUTLINE_NAME char(31) The query outline name.

RDB$BLR_ID char 16 The BLR hashed identifier. This
identifier is generated by the
optimizer whenever a query outline
is created.

RDB$MODE integer The query mode (MANDATORY or
OPTIONAL).

RDB$FLAGS integer Flags.

RDB$DESCRIPTION byte varying A user-supplied description of this
outline.

RDB$OUTLINE_BLR byte varying The compiled query outline.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$CREATED date vms Set when the outline is created.

RDB$LAST_ALTERED date vms Reserved for future use.

RDB$OUTLINE_CREATOR char(31) Creator of this outline.

RDB$FLAGS represents flags for RDB$QUERY_OUTLINES system table.

Bit Position Description

0 This outline has been invalidated by some action, such as dropping
a required table or index.

I–36 System Tables

I.6.20 RDB$RELATION_CONSTRAINTS
The RDB$RELATION_CONSTRAINTS system table lists all table-specific
constraints. The following table provides information on the columns of the
RDB$RELATION_CONSTRAINTS system table.

Column Name Data Type Summary Description

RDB$CONSTRAINT_MATCH_
TYPE

integer The match type associated with a
referential integrity table-specific
constraint. This column is reserved
for future use. The value is always
0.

RDB$CONSTRAINT_NAME char(31) The name of the constraint
defined by the table specified by
RDB$RELATION_NAME.

The value in this column equates to
a value for the same column in the
RDB$CONSTRAINTS system table.

RDB$CONSTRAINT_SOURCE byte varying This text string contains the source
of the constraint from the table
definition.

RDB$CONSTRAINT_TYPE integer The type of table-specific constraint
defined. The values are shown in
the RDB$CONSTRAINT_TYPE
section.

RDB$ERASE_ACTION integer The type of referential integrity
erase action specified. This column
is reserved for future use. The
value is always 0.

RDB$FIELD_NAME char(31) The name of the column for which
a column-level, table-specific
constraint is defined. The column is
blank for a table-level constraint.

RDB$FLAGS integer Flags.

RDB$MODIFY_ACTION integer The type of referential integrity
modify action specified. This
column is reserved for future use.
The value is always 0.

System Tables I–37

Column Name Data Type Summary Description

RDB$REFD_CONSTRAINT_
NAME

char(31) The name of the unique or primary
key constraint referred to by a
referential integrity foreign key
constraint.

If the constraint is not a referential
integrity constraint or no
referential integrity constraint
was specified, this column will
be null. Otherwise, the value
in this column will equate to a
value for the same columns in
the RDB$CONSTRAINTS and
RDB$RELATION_CONSTRAINT_
FLDS system tables.

This column is used to determine
the foreign key referenced table
name and referenced column
names.

RDB$RELATION_NAME char(31) The name of the table on which the
specified constraint is defined. The
value in this column equates to a
value for the same column in the
RDB$RELATIONS system table.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$FLAGS represents flags for RDB$RELATION_CONSTRAINTS system
table.

Bit Position Description

0 This is SQL standard UNIQUE constraint which allows unique
values and ignores NULL.

I.6.20.1 RDB$CONSTRAINT_TYPE
The following table lists the values for the RDB$CONSTRAINT_TYPE column.

Value Symbol Meaning

1 RDB$K_CON_CONDITION Requires conditional
expression constraint.

2 RDB$K_CON_PRIMARY_KEY Primary key constraint.

I–38 System Tables

Value Symbol Meaning

3 RDB$K_CON_REFERENTIAL Referential (foreign key)
constraint.

4 RDB$K_CON_UNIQUE Unique constraint.

5 Reserved for future use.

6 RDB$K_CON_NOT_NULL Not null (missing)
constraint.

I.6.21 RDB$RELATION_CONSTRAINT_FLDS
The RDB$RELATION_CONSTRAINT_FLDS system table lists the columns
that participate in unique, primary, or foreign key declarations for table-specific
constraints.

There is one row for each column that represents all or part of a unique,
primary, or foreign key constraint.

The following table provides information on the columns of the RDB$RELATION_
CONSTRAINT_FLDS system table.

Column Name Data Type Summary Description

RDB$CONSTRAINT_NAME char(31) The name of a constraint for which
the specified column participates.

RDB$FIELD_NAME char(31) The name of the column that is all
or part of the specified constraint.
The value in this column is
the same as that stored in the
RDB$RELATION_FIELDS system
table.

RDB$FIELD_POSITION integer The ordinal position of the specified
column within the column list that
declares the unique, primary or
foreign key constraint.

For column-level constraints, there
will always be only one column in
the list. The first column in the list
has position value 1, the second has
position value 2, and so on.

RDB$FLAGS integer Reserved for future use.

RDB$SECURITY_CLASS char(20) Reserved for future use.

System Tables I–39

I.6.22 RDB$RELATION_FIELDS
The RDB$RELATION_FIELDS system table contains one row for each column
in each table. The following table provides information on the columns of the
RDB$RELATION_FIELDS system table.

Column Name Data Type Summary Description

RDB$RELATION_NAME char(31) The name of the table that contains
the column represented by this row.

RDB$FIELD_NAME char(31) The name of the column repre-
sented by this row within the
table. Each RDB$RELATION_
FIELDS row that has the same
RDB$RELATION_NAME must
have a unique RDB$FIELD_NAME.

RDB$FIELD_SOURCE char(31) The name of the domain (from the
RDB$FIELD_NAME column within
the
RDB$FIELDS table) that supplies
the definition for this column.

RDB$FIELD_ID integer An identifier that can be used
within the BLR to name the column
represented by this row. Oracle
Rdb assigns each column an id that
is permanent for as long as the
column exists within the table.

RDB$FIELD_POSITION integer The ordinal position of the column
represented by this row, relative
to the other columns in the same
table.

RDB$QUERY_NAME char(31) The query name of this column.
RDB$QUERY_NAME can be null.

RDB$UPDATE_FLAG integer A value that indicates whether a
column can be updated:

• 0

If column cannot be updated.

• 1

If column can be updated.

I–40 System Tables

Column Name Data Type Summary Description

RDB$QUERY_HEADER byte varying The query header of this column
for use by SQL. Column attributes
in RDB$RELATION_FIELDS take
precedence over RDB$FIELDS.

If the attribute value is missing in
RDB$RELATION_FIELDS, SQL
uses the value from RDB$FIELDS.

RDB$DESCRIPTION byte varying A user-supplied description of the
contents of this row.

RDB$VIEW_CONTEXT integer For view tables, this column
identifies the context variable
used to qualify the view column.

This context variable must be
defined within the row selection
expression that defines the view.
The context variable appears
in the BLR represented by the
column RDB$VIEW_BLR in
RDB$RELATIONS.

RDB$BASE_FIELD char(31) The local name of the column used
as a component of a view. The
name is qualified by the context
variable identified in RDB$VIEW_
CONTEXT.

RDB$DEFAULT_VALUE byte varying The default value used by non-
SQL interfaces when no value is
specified for a column during a
STORE clause.

It differs from RDB$MISSING_
VALUE in that it holds an actual
column value. Column attributes in
RDB$RELATION_FIELDS take
precedence over attributes in
RDB$FIELDS.

If the attribute value is missing in
RDB$RELATION_FIELDS, the
value from RDB$FIELDS is used.

RDB$EDIT_STRING varchar(255) The edit string to be used by
interactive SQL when printing
the column. RDB$EDIT_STRING
can be null.

RDB$EXTENSION_PARAMETERS byte varying Reserved for future use.

System Tables I–41

Column Name Data Type Summary Description

RDB$ACCESS_CONTROL byte varying The access control list for the
column.

RDB$DEFAULT_VALUE2 byte varying The BLR for SQL default value.
This value is used when no value
is provided in an SQL INSERT
statement.

RDBVMS$SECURITY_AUDIT integer A bit mask that indicates the
privileges that will be audited for
the database, as specified in the
RMU Set Audit command.

RDBVMS$SECURITY_ALARM integer A bit mask that indicates the
privileges that will produce alarms
for the database, as specified in the
RMU Set Audit command.

RDB$SECURITY_CLASS char(20) Reserved for future use.

I.6.23 RDB$RELATIONS
The RDB$RELATIONS system table names all the tables and views within the
database. There is one row for each table or view. The following table provides
information on the columns of the RDB$RELATIONS system table.

Column Name Data Type Summary Description

RDB$RELATION_NAME char(31) The name of a table within the
database. Each row within
RBB$RELATIONS must have a
unique RDB$RELATION_NAME.

RDB$RELATION_ID integer An identification number used
within the BLR to identify a table.

RDB$STORAGE_ID integer A pointer to the database logical
area where the data for this table is
stored.

I–42 System Tables

Column Name Data Type Summary Description

RDB$SYSTEM_FLAG integer A value that indicates whether
a table is a system table or a
user-defined table:

• 0

If a user table.

• 1

If a system table.

RDB$DBKEY_LENGTH integer The length in bytes of the database
key. A database key for a row in
a table is 8 bytes, and "n times 8
" for a view row, where "n" is the
number of tables referred to in the
view.

If the view does not contain a
dbkey, RDB$DBKEY_LENGTH is
0. This occurs when the view uses
GROUP BY, UNION, or returns a
statistical value.

RDB$MAX_VERSION integer The number of the current version
of the table definition.

This value is matched with the
RDB$VERSION column in
RDB$FIELD_VERSIONS to
determine the current row format
for the table.

RDB$CARDINALITY bigint The number of rows in the table
(cardinality).

RDB$FLAGS integer Flags.

RDB$VIEW_BLR byte varying The BLR that describes the row
selection expression used to select
the rows for the view. If the table
is not a view, RDB$VIEW_BLR is
missing.

RDB$DESCRIPTION byte varying A user-supplied description of this
table or view.

RDB$VIEW_SOURCE byte varying The user’s source text for the view
definition.

RDB$ACCESS_CONTROL byte varying The access control policy for the
table.

System Tables I–43

Column Name Data Type Summary Description

RDB$EXTENSION_PARAMETERS byte varying Reserved for future use.

RDB$CDD_NAME byte varying The fully qualified name of the
dictionary entity upon which
the table definition is based, as
specified in the SQL clause, FROM
PATHNAME.

RDBVMS$SECURITY_AUDIT integer A bit mask that indicates the
privileges that will be audited for
the table, as specified in the RMU
Set Audit command.

RDBVMS$SECURITY_ALARM integer A bit mask that indicates the
privileges that produce alarms for
the table, as specified in the RMU
Set Audit command.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDBVMS$SECURITY_AUDIT2 integer Reserved for future use.

RDBVMS$SECURITY_ALARM2 integer Reserved for future use.

RDB$CREATED date vms Set when the table or view is
created (for system tables it will be
the same as the database creation
timestamp).

RDB$LAST_ALTERED date vms Set when SQL ALTER TABLE,
CREATE/ALTER STORAGE MAP,
ALTER DOMAIN, GRANT, or
REVOKE statements cause changes
to this system table.

RDB$RELATION_CREATOR char(31) Creator of this system table.

RDB$ROW_CLUSTER_FACTOR bigint(7) The ratio of the number of clump
changes that occur when you
sequentially read the rows to the
number of rows in a table. If a
row is fragmented and part of its
fragment is located in a clump
different than the current one or
immediate next one then it should
be counted as a clump change.

RDB$TYPE_ID integer Reserved for future use.

RDB$FLAGS represents flags for RDB$RELATIONS system table.

I–44 System Tables

Bit Position Description

0 This table is a view.

1 This table is not compressed.

2 The SQL clause, WITH CHECK OPTION, is used in this view
definition.

3 Indicates a special internal system table.

4 This view is not an ANSI updatable view.

5 Reserved for future use.

6 Reserved for future use.

7 Reserved for future use.

8 Ignore Bit 1 and use RDB$STORAGE_MAPS for compression
information.

9 Set for temporary table.

10 Set for global temporary table; clear for local temporary table.

11 Set for delete data on commit; clear for preserve data on commit.

12 Reserved for future use.

13 Set if view or table references a local temporary table.

14 Special read-only information table.

15 System table has storage map.

16 View references only temporary table.

I.6.24 RDB$ROUTINES
The RDB$ROUTINES system table describes each routine that is part of
a stored module or a standalone external routine. An external routine can
either be part of a module or standalone (outside the context of a module). The
following table provides information on the columns of the RDB$ROUTINES
system table.

Column Name Data Type Summary Description

RDB$ROUTINE_NAME char(31) Name of the routine.

RDB$GENERIC_ROUTINE_
NAME

char(31) Reserved for future use.

RDB$MODULE_ID integer The identifier of the module that
contains this routine. If routine is
standalone, value is 0.

System Tables I–45

Column Name Data Type Summary Description

RDB$ROUTINE_ID integer Unique identifier assigned to this
routine.

RDB$ROUTINE_VERSION char(16) Routine version and checksum.
Allows runtime validation of
the routine with respect to the
database.

RDB$PARAMETER_COUNT integer The number of parameters for this
routine.

RDB$MIN_PARAMETER_
COUNT

integer Minimum number of parameters for
this routine.

RDB$ROUTINE_BLR byte varying The BLR for this routine. If the
routine is external, this column is
set to NULL.

RDB$ROUTINE_SOURCE byte varying Source of the routine as provided by
the definer.

RDB$FLAGS integer Flags.

RDB$SOURCE_LANGUAGE integer The RDB$SOURCE_LANGUAGE
section lists the values for this
column.

RDB$DESCRIPTION byte varying Description of the routine.

RDB$ACCESS_CONTROL byte varying The access control list (ACL) to
control access to the routine. This
value can be NULL.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$EXTENSION_PARAMETERS byte varying Stores interface information
about the routine. This includes
parameter mappings, the shareable
image name, and entry point name.

RDB$TYPE_ID integer Reserved for future use.

RDB$ROUTINE_OWNER char(31) Owner of the routine. This column
is only used when the routine is
standalone (when RDB$MODULE_
ID is 0) otherwise the value is
NULL.

RDB$CREATED date vms Set when the routine is created
(the same as the parent module’s
creation timestamp).

I–46 System Tables

Column Name Data Type Summary Description

RDB$LAST_ALTERED date vms Set when the routine is modified
by the ALTER, RENAME, GRANT,
and REVOKE statements.

RDB$ROUTINE_CREATOR char(31) Creator of this routine. Differentiates
between AUTHORIZATION and
OWNER.

RDB$FLAGS represents flags for RDB$ROUTINES system table.

Bit Position Description

0 Routine is a function. (Call returns a result.)

1 Routine is not valid. (Invalidated by a metadata change.)

2 The function is not deterministic (that is, the routine is variant). A
subsequent invocation of the routine with identical parameters may
return different results.

)

3 Routine can change the transaction state.

4 Routine is a secured shareable image.

5 Reserved for future use.

6 Routine is not valid. (Invalidated by a metadata change to the object
upon which this routine depends. This dependency is a language
semantics dependency.)

7 Reserved for future use.

8 External function returns NULL when called with any NULL
parameter.

9 Routine has been analyzed (used for trigger dependency tracking).

10 Routine inserts rows.

11 Routine modifies rows.

12 Routine deletes rows.

13 Routine selects rows.

14 Routine calls other routines.

15 Reserved for future use.

16 Routine created with USAGE IS LOCAL clause.

17 Reserved for future use.

18 Reserved for future use.

System Tables I–47

Bit Position Description

19 Routine is a SYSTEM routine.

20 Routine generated by Oracle Rdb.

Other bits are reserved for future use.

I.6.24.1 RDB$SOURCE_LANGUAGE
The following table lists the values for the RDB$SOURCE_LANGUAGE
column.

Value Language

0 Language undefined

1 Ada

2 C

3 COBOL

4 FORTRAN

5 Pascal

6 Reserved for future use.

7 BASIC

8 GENERAL

9 PL/I

10 SQL - default for stored functions and stored procedures

I.6.25 RDB$SEQUENCES
The RDB$SEQUENCES system table contains information about each
sequence. The following table provides information on the columns of the
RDB$SEQUENCES system table.

Column Name Data Type Summary Description

RDB$CREATED date vms Time sequence was created.

RDB$LAST_ALTERED date vms Last time sequence was altered.

RDB$ACCESS_CONTROL byte varying Access control list for this sequence.

RDB$DESCRIPTION byte varying Description provided for this
sequence.

I–48 System Tables

Column Name Data Type Summary Description

RDB$START_VALUE bigint Starting value for the sequence.

RDB$MINIMUM_SEQUENCE bigint Minimum value for the sequence.

RDB$MAXIMUM_SEQUENCE bigint Maximum value for the sequence.

RDB$NEXT_SEQUENCE_
VALUE

bigint Next value available for use for
the sequence. This column is a
read only COMPUTED BY column.
When the sequence is first defined
this column returns NULL.

RDB$INCREMENT_VALUE integer Increment value for the sequence.
A positive value indicates an
ascending sequence, and a negative
value indicates a descending
sequence.

RDB$CACHE_SIZE integer Number of sequence numbers to
allocate and hold in memory. If one
(1), then NOCACHE was specified
and the values will be allocated one
at a time.

RDB$FLAGS integer Flags.

RDB$SEQUENCE_ID integer Unique number assigned to this
sequence object. This value is for
internal use only.

RDB$SEQUENCE_NAME char(31) Unique name of the sequence.

RDB$SEQUENCE_CREATOR char(31) Creator of this sequence.

RDB$FLAGS represents flags for RDB$SEQUENCES system table.

Bit Position Description

0 Sequence will cycle.

1 Sequence is ordered.

2 Sequence is random.

3 Indicates that this is a system sequence and may not be dropped.

4 Indicates that there was no minimum value specified.

5 Indicates that there was no maximum value specified.

6 Indicates that this is a column IDENTITY sequence.

7 Indicates that this sequence will wait for locks.

System Tables I–49

Bit Position Description

8 Indicates that this sequence will not wait for locks.

I.6.26 RDB$STORAGE_MAPS
The RDB$STORAGE_MAPS system table contains information about each
storage map. The following table provides information on the columns of the
RDB$STORAGE_MAPS system table.

Column Name Data Type Summary Description

RDB$MAP_NAME char(31) The name of the storage map.

RDB$RELATION_NAME char(31) The name of the table to which the
storage map refers.

RDB$INDEX_NAME char(31) The name of the index specified in
the SQL clause, PLACEMENT VIA
INDEX, of the storage map.

RDB$FLAGS integer Flags.

RDB$MAP_SOURCE byte varying The user’s source text for the
storage map definition.

RDB$DESCRIPTION byte varying A user-supplied description of the
storage map.

RDB$EXTENSION_PARAMETERS byte varying Lists the column names for vertical
record partitioning.

RDB$VERTICAL_PARTITION_
INDEX

integer A counter that indicates the
number of vertical record
partitions.

If vertical record partitioning is
used, there is one RDB$STORAGE_
MAPS for each vertical partition.

RDB$VERTICAL_PARTITION_
NAME

char(31) Name of the vertical record
partition.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$FLAGS represents flags for RDB$STORAGE_MAPS system table.

Bit Position Description

0 If map is for a mixed format area.

1 If map enables compression.

I–50 System Tables

Bit Position Description

2 Partition key cannot be updated.

3 Reserved for future use.

4 User named this partition.

5 Override used for strict partitioning - NO REORGANIZE.

I.6.27 RDB$STORAGE_MAP_AREAS
The RDB$STORAGE_MAP_AREAS system table contains information about
each storage area to which a storage map refers. The following table provides
information on the columns of the RDB$STORAGE_MAP_AREAS system
table.

Column Name Data Type Summary Description

RDB$MAP_NAME char(31) The name of the storage map.

RDB$AREA_NAME char(31) The name of the storage area
referred to by the storage map.

RDB$ROOT_DBK char(8) A pointer to the root of the
SORTED index, if it is a SORTED
index.

RDB$ORDINAL_POSITION integer The order of the storage area
represented by this row in the map.

RDB$STORAGE_ID integer For a table, a pointer to the
database logical area. For a hashed
index, a pointer to the system
record.

RDB$INDEX_ID integer A pointer to the index logical area.

RDB$STORAGE_BLR byte varying The BLR that represents the SQL
clause, WITH LIMIT OF, in the
storage map definition.

RDB$DESCRIPTION byte varying Description of this partition.

RDB$EXTENSION_PARAMETERS byte varying Lists table names and column
names that are referenced by
segmented string storage maps.

RDB$VERTICAL_PARTITION_
INDEX

integer For LIST storage maps, the value
indicates the relationship between
areas of a LIST storage map area
set.

System Tables I–51

Column Name Data Type Summary Description

RDB$FLAGS integer Flags.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$PARTITION_NAME char(31) Name of the index or storage map
partition.

RDB$FLAGS represents flags for RDB$STORAGE_MAP_AREAS system table.

Bit Position Description

0 If Bit 0 is clear, the LIST storage area set is filled randomly.

If Bit 0 is set, the LIST storage area set is filled sequentially.

1 User named this partition.

2 BUILD PARTITION is required.

3 Deferred build using NOLOGGING.

I.6.28 RDB$SYNONYMS
The RDB$SYNONYMS system table connects the user-visible name of an
object to the stored name of an object. The user-visible name of an object might
be replicated in multiple schemas, whereas the stored name of an object is
unique across all schemas and catalogs. This table is present only in databases
that have the SQL multischema feature enabled.

Unlike rows in other system tables, the rows in the RDB$SYNONYMS system
table are compressed. The following table provides information on the columns
of the RDB$SYNONYMS system table.

Column Name Data Type Summary Description

RDB$SCHEMA_ID integer The RDB$CATALOG_SCHEMA_ID
of the schema to which this object
belongs.

RDB$USER_VISIBLE_NAME char(31) The name of an object as it appears
to the user.

I–52 System Tables

Column Name Data Type Summary Description

RDB$OBJECT_TYPE integer A value that represents the type of
an object, as follows:

• 8

A constraint.

• 19

A domain (global field).

• 26

An index.

• 31

A relation (table).

• 36

A view.

• 60

A sequence.

• 67

A storage map.

• 81

A trigger.

• 117

A collating sequence.

• 180

An outline.

• 192

A type.

RDB$STORED_NAME char(31) The name of an object as is actually
stored in the database.

RDB$SECURITY_CLASS char(20) Reserved for future use.

System Tables I–53

I.6.29 RDB$TRIGGERS
The RDB$TRIGGERS system table describes the definition of a trigger. The
following table provides information on the columns of the RDB$TRIGGERS
system table.

Column Name Data Type Summary Description

RDB$DESCRIPTION byte varying A user-supplied text string
describing the trigger.

RDB$FLAGS integer Flags.

RDB$RELATION_NAME char(31) The name of the table for which
this trigger is defined. The trigger
may be selected on an update
to the named table (qualified
by the columns described in the
RDB$TRIGGER_FIELD_NAME_
LIST).

This table is used as a subject table
for all contexts that refer to it.

RDB$TRIGGER_ACTIONS byte varying A text string containing all the sets
of triggered actions defined for this
trigger. The string consists of one
or more sets of clumplets, one set
for each triggered action.

RDB$TRIGGER_CONTEXTS integer The context number used within
the triggered action BLR to map
the triggered action BLR to the
current context of the triggering
update statement.

RDB$TRIGGER_FIELD_NAME_
LIST

byte varying A text string composed of a count
field and one or more counted
strings. The count is an unsigned
word that represents the number of
strings in the list.

The counted strings are ASCIC
names that represent column
names. If the trigger is of event
type UPDATE, it will be evaluated
if one or more of the specified
columns has been modified.

RDB$TRIGGER_NAME char(31) The name of a trigger. This name
must be a unique trigger name
within the database.

I–54 System Tables

Column Name Data Type Summary Description

RDB$TRIGGER_NEW_
CONTEXT

integer A context number used within the
triggered action’s BLR to refer to
the new row values for the subject
table for an UPDATE event.

RDB$TRIGGER_OLD_
CONTEXT

integer A context number used within
the triggered action’s BLR to
refer to the old row values of the
subject table that existed before an
UPDATE event.

RDB$TRIGGER_SOURCE byte varying An optional text string for the
trigger definition. The string is not
used by the database system.

It should reflect the full definition
of the trigger. This column is used
by the interfaces to display the
trigger definition.

RDB$TRIGGER_TYPE integer The type of trigger, as defined
by the combination of the trigger
action time and the trigger event.
Action times are BEFORE and
AFTER, and events are INSERT,
DELETE, and UPDATE.

The values that represent the
type of trigger are shown in the
TRIGGER_TYPE_VAL section.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDB$CREATED date vms Set when the trigger is created.

RDB$LAST_ALTERED date vms Set when SQL ALTER TRIGGER
statement is used.

RDB$TRIGGER_CREATOR char(31) Creator of this trigger.

RDB$EXTENSION_PARAMETERS byte varying Extension parameters.

RDB$FLAGS represents flags for RDB$TRIGGERS system table.

Bit Position Description

0 Trigger is currently disabled.

1 Invalid due to changed schema.

2 Referenced table was altered.

System Tables I–55

I.6.29.1 TRIGGER_TYPE_VAL
The following table lists the values for the RDB$TRIGGER_TYPE column of
the RDB$TRIGGERS system table and the different types of triggers they
represent.

Numeric
Value Symbolic Value Description

1 RDB$K_BEFORE_STORE Trigger is evaluated before an
INSERT.

2 RDB$K_BEFORE_ERASE Trigger is evaluated before a
DELETE.

3 RDB$K_BEFORE_MODIFY Trigger is evaluated before an
UPDATE.

4 RDB$K_AFTER_STORE Trigger is evaluated after an
INSERT.

5 RDB$K_AFTER_ERASE Trigger is evaluated after a
DELETE.

6 RDB$K_AFTER_MODIFY Trigger is evaluated after an
UPDATE.

I.6.30 RDB$VIEW_RELATIONS
The RDB$VIEW_RELATIONS system table lists all the tables that participate
in a given view. There is one row for each table or view in a view definition.
The following table provides information on the columns of the RDB$VIEW_
RELATIONS system table.

Column Name Data Type Summary Description

RDB$VIEW_NAME char(31) Names a view or table that uses
another table. The value of
RDB$VIEW_NAME is normally
a view name, but might also be
the name of a table that includes a
column computed using a statistical
expression.

RDB$RELATION_NAME char(31) The name of a table used to form
the view.

I–56 System Tables

Column Name Data Type Summary Description

RDB$VIEW_CONTEXT integer An identifier for the context
variable used to identify a table
in the view. The context variable
appears in the BLR represented
by the column RDB$VIEW_BLR in
RDB$RELATIONS.

RDB$SECURITY_CLASS char(20) Reserved for future use.

I.6.31 RDB$WORKLOAD
The RDB$WORKLOAD system table is an optional system table (similar to
RDB$SYNONYMS and RDB$CATALOG_SCHEMA). It is created when the
database attribute WORKLOAD COLLECTION IS ENABLED is specified on
an SQL CREATE or ALTER DATABASE statement. Once created, this system
table can never be dropped.

The following table provides information on the columns of the RDB$WORKLOAD
system table.

Column Name Data Type Summary Description

RDB$CREATED date vms Time workload entry was created.

RDB$LAST_ALTERED date vms Last time statistics were updated.

RDB$DUPLICITY_FACTOR bigint(7) Value ranges from 1.0 to table
cardinality. Number of duplicate
values for an interesting column
group (RDB$FIELD_GROUP).

RDB$NULL_FACTOR integer(7) Value ranges from 0.0 to 1.0. This
is the proportion of table rows that
have NULL in one or more columns
of an interesting column group.

RDB$RELATION_ID integer Base table identifier.

RDB$FLAGS integer Reserved for future use.

RDB$FIELD_GROUP char(31) Contains up to 15 sorted column
identifiers.

RDB$SECURITY_CLASS char(20) Reserved for future use.

System Tables I–57

Index

A
ABS function, G–1
Ada language

declaring the SQLDA, D–6
SQLCA, C–13

ADD_MONTHS function, G–5
ANSI_AUTHORIZATION qualifier

See also RIGHTS clause in Volumes 1 and 2
replaced by RIGHTS clause, F–6

ANSI_DATE qualifier
See also DEFAULT DATE FORMAT clause in

Volumes 1 and 2
replaced by DEFAULT DATE FORMAT clause,

F–6
ANSI_IDENTIFIERS qualifier

See also KEYWORD RULES clause in
Volumes 1 and 2

replaced by KEYWORD RULES clause, F–6
ANSI_PARAMETERS qualifier

See also PARAMETER COLONS clause in
Volume 2

replaced by PARAMETER COLONS clause,
F–6

ANSI_QUOTING qualifier
See also QUOTING RULES clause in Volumes

1 and 2
replaced by QUOTING RULES clause, F–6

ASCII function, G–5
ASCII in C programs

restriction, D–13

ASCII in dynamic SQL
restriction, D–13

ASCIZ in C programs
restriction, D–13

ASCIZ in dynamic SQL
restriction, D–13

B
BASIC language

declaring the SQLDA, D–7, D–17
SQLCA, C–13

Built-in function, G–1

C
CALL statement

dynamic SQL and
determing, C–10

Cascading delete, F–3
CEIL function, G–5
Character set

logical name
RDB$CHARACTER_SET, E–1
specifying, E–1

CHR function, G–5
C language

declaring the SQLDA, D–8, D–18
declaring the SQLDA2, D–18
SQLCA, C–15

COBOL language
SQLCA, C–16
using error literals, C–9

Index–1

CONCAT function, G–1
CONTAINING predicate

returning data types for parameter markers,
D–4

Conversion
of data types

in dynamic SQL, D–14
CONVERT function, G–2
COS function, G–5
COSH function, G–5

D
Database system tables, I–1
Data type

conversion
in dynamic SQL, D–14

determining for dynamic SQL, D–12
Declaring the SQLDA

in Ada, D–6
in BASIC, D–7, D–17
in PL/I, D–8

Declaring the SQLDA2
in C, D–18

DECODE function, G–2
DELETE statement

number of rows deleted, C–11
Deprecated feature

of command line qualifiers, F–6
of constraint in CREATE TABLE statement,

F–7
of ORDER BY clause, F–3
SQLOPTIONS=ANSI_AUTHORIZATION,

F–6
SQLOPTIONS=ANSI_DATE, F–6
SQLOPTIONS=ANSI_IDENTIFIERS, F–6
SQLOPTIONS=ANSI_PARAMETERS, F–6
SQLOPTIONS=ANSI_QUOTING, F–6
UNIQUE predicate, F–8

DESCRIBE statement
MARKERS clause, D–2
SELECT LIST clause, D–2
SQLDA, D–9

Dynamic SQL
and date-time data types, D–15
CALL statement

determining if, C–10
data type conversion by setting SQLTYPE

field, D–14
declaring the SQLDA

for Ada, D–6
for BASIC, D–7, D–17
for C, D–8
for PL/I, D–8

declaring the SQLDA2
for C, D–18

declaring the SQLDA2 for Ada, D–16
declaring the SQLDA2 for BASIC, D–17
description of SQLDA2 fields, D–18
description of SQLDA fields, D–9
determining data types, D–12
distinguishing SELECT from other

statements, D–4
EXECUTE statement, D–3
FETCH statement, D–3
INCLUDE statement, D–3
multiple

SQLDA declarations, D–3
OPEN statement, D–2
parameter markers, D–2
purpose of SQLDA, D–1
select lists, D–1
SELECT statement

determining if, C–10
SQLDA, D–1, D–3
SQLDERRD array

and SELECT, C–11
SQLERRD array, C–10
SQLTYPE field, D–12
structure of SQLDA, D–5

E
Error handling

error messages, A–1
flagging, A–7
online message documentation, A–1
RDB$LU_STATUS, C–11

Index–2

Error handling (cont’d)
return codes in SQLCA, C–3
sql_get_error_text routine, C–12
sql_signal routine, C–12
with message vector, C–1
with SQLCA, C–1
with SQLSTATE, C–19

Error literals
COBOL, C–9

Error message
flagging of precompiler and module language,

A–7
format of, A–1
locations of online documentation, A–3
online documentation locations, A–3
types of, A–1

EXECUTE statement
parameter markers, D–3
SQLDA, D–3, D–9

EXP function, G–5
External functions

logical name for location, E–1

F
FETCH statement

current row, C–11
SQLERRD field and, C–11
using select lists, D–3
using SQLDA, D–3, D–9

FLOOR function, G–5
FORTRAN language

SQLCA, C–16
Function

ABS, G–1
ADD_MONTHS, G–5
ASCII, G–5
built-in, G–1
CEIL, G–5
CHR, G–5
CONCAT, G–1
CONVERT, G–2
COS, G–5
COSH, G–5
DECODE, G–2
EXP, G–5

Function (cont’d)
external

logical name for location, E–1
FLOOR, G–5
GREATEST, G–3
HEXTORAW, G–5
INITCAP, G–6
INSTR, G–6
INSTRB, G–6
LAST_DAY, G–7
LEAST, G–3
LENGTH, G–3
LENGTHB, G–3
LN, G–7
LOG, G–7
LPAD, G–7
LTRIM, G–7
MOD, G–8
MONTHS_BETWEEN, G–8
NEW_TIME, G–8
NEXT_DAY, G–8
Oracle, G–1
POWER, G–9
RAWTOHEX, G–9
REPLACE, G–9
ROUND, G–3
RPAD, G–10
RTRIM, G–10
SIGN, G–10
SIN, G–11
SINH, G–11
SQRT, G–11
SUBSTR, G–11
SUBSTRB, G–11
SYSDATE, G–3
TAN, G–11
TANH, G–12
TRUNC, G–3

G
GREATEST function, G–3

Index–3

H
Handling errors

online message documentation, A–1
RDB$LU_STATUS, C–11
sql_get_error_text routine, C–12
sql_signal routine, C–12
with message vector, C–1
with SQLCA, C–1
with SQLSTATE, C–19

HEXTORAW function, G–5

I
INCLUDE statement

SQLDA, D–3, D–6, D–8
SQLDA2, D–18

Incompatible syntax changes, F–1
Information Tables, H–1
INITCAP function, G–6
INSERT statement

number of rows stored, C–10
INSTRB function, G–6
INSTR function, G–6

L
LAST_DAY function, G–7
LEAST function, G–3
LENGTHB function, G–3
LENGTH function, G–3
LIKE predicate

returning data types for parameter markers,
D–4

Limits and parameters
maximum length of SQLNAME field, D–9

List
length of longest element, C–11
number of elements, C–11

LN function, G–7
LOG function, G–7
Logical name, E–1

RDB$CHARACTER_SET, E–1
RDB$LIBRARY, E–1
RDB$ROUTINES, E–1

Logical name (cont’d)
RDMS$BIND_OUTLINE_MODE, E–1
RDMS$BIND_QG_CPU_TIMEOUT, E–1
RDMS$BIND_QG_REC_LIMIT, E–2
RDMS$BIND_QG_TIMEOUT, E–2
RDMS$BIND_SEGMENTED_STRING_

BUFFER, E–2
RDMS$DEBUG_FLAGS, E–2
RDMS$DIAG_FLAGS, E–2
RDMS$RTX_SHRMEM_PAGE_CNT, E–2
RDMS$SET_FLAGS, E–2
RDMS$USE_OLD_CONCURRENCY, E–2
RDMS$USE_OLD_SEGMENTED_STRING,

E–2
RDMS$VALIDATE_ROUTINE, E–2
SQL$DATABASE, E–2
SQL$DISABLE_CONTEXT, E–2
SQL$EDIT, E–2
SQLINI, E–2
SYS$CURRENCY, E–2
SYS$DIGIT_SEP, E–3
SYS$LANGUAGE, E–3
SYS$RADIX_POINT, E–3

LPAD function, G–7
LTRIM function, G–7

M
MARKERS clause of DESCRIBE statement, D–2
Messages, A–1
Message vector, C–1

in Ada, C–13
in BASIC, C–13
in C, C–15
in COBOL, C–16
in FORTRAN, C–16
in INCLUDE statement, C–1
in Pascal, C–17
in PL/I, C–18
RDB$LU_STATUS, C–11
sql_get_error_text routine, C–12
sql_signal routine, C–12

Metadata
system tables, I–1

Index–4

MOD function, G–8
MONTHS_BETWEEN function, G–8
Multiple SQLDA declarations, D–3

N
NEW_TIME function, G–8
NEXT_DAY function, G–8

O
Obsolete SQL syntax, F–1
OPEN statement

parameter markers, D–2
SQLERRD field and, C–11
using SQLDA, D–2, D–9

Oracle RDBMS function, G–1

P
Parameter

message vector, C–11
related to SQLDA, D–14
SQLCA, C–2

Parameter markers
data types returned, D–4
determining data types, D–12
in DESCRIBE statement, D–2
in EXECUTE statement, D–3
in OPEN statement, D–2
in SELECT statement, D–2
in SQLDA, D–2

Pascal language
SQLCA, C–17

PL/I language
declaring the SQLDA, D–8
SQLCA, C–18
SQLDA, D–1

POWER function, G–9
Predicate

UNIQUE, F–8
PREPARE statement

SELECT LIST clause, D–2
SQLDA, D–9

Previously reserved words
SQL3, F–14

Q
Query cost estimate

SQLCA values, C–11

R
RAWTOHEX function, G–9
RDB$CHARACTER_SET logical name, E–1
RDB$LIBRARY logical name, E–1
RDB$LU_STATUS field of message vector, C–11
RDB$MESSAGE_VECTOR structure, C–11

in Ada, C–13
in BASIC, C–13
in C, C–15
in COBOL, C–16
in FORTRAN, C–16
in INCLUDE statement, C–1
in Pascal, C–17
in PL/I, C–18
RDB$LU_STATUS field, C–11
sql_get_error_text routine, C–12
sql_signal routine, C–12

RDB$ROUTINES logical name, E–1
RDMS$BIND_OUTLINE_MODE logical name,

E–1
RDMS$BIND_QG_CPU_TIMEOUT logical name,

E–1
RDMS$BIND_QG_REC_LIMIT logical name,

E–2
RDMS$BIND_QG_TIMEOUT logical name, E–2
RDMS$BIND_SEGMENTED_STRING_BUFFER

logical name, E–2
RDMS$DEBUG_FLAGS logical name, E–2
RDMS$DIAG_FLAGS logical name, E–2
RDMS$RTX_SHRMEM_PAGE_CNT logical

name, E–2
RDMS$SET_FLAGS logical name, E–2
RDMS$USE_OLD_CONCURRENCY logical

name, E–2

Index–5

RDMS$USE_OLD_SEGMENTED_STRING
logical name, E–2

RDMS$VALIDATE_ROUTINE logical name,
E–2

REPLACE function, G–9
Reserved word

ANSI89, F–10
SQL92 Standard, F–11
SQL:1999, F–12

Restriction
ASCII in C programs, D–13
ASCII in dynamic SQL, D–13
ASCIZ in C programs, D–13
ASCIZ in dynamic SQL, D–13

ROUND function, G–3
Routine

sql_get_error_text, C–12
sql_signal, C–12

RPAD function, G–10
RTRIM function, G–10

S
SELECT LIST clause

of DESCRIBE statement, D–2
of PREPARE statement, D–2

Select lists
DESCRIBE statement, D–2
determining data types, D–12
for SELECT statements, D–3
in dynamic SQL, D–1
PREPARE statement, D–2
used by FETCH statements, D–3

SELECT statement
dynamic SQL and

determing, C–10
number of rows in result table, C–11
parameter markers, D–2
select lists, D–3

SIGN function, G–10
SIN function, G–11
SINH function, G–11
SQL$DATABASE logical name, E–2

SQL$DISABLE_CONTEXT logical name, E–2
SQL$EDIT logical name, E–2
SQL$GET_ERROR_TEXT routine

See also sql_get_error_text routine, C–12
SQL$SIGNAL routine

See sql_signal routine
SQL3 draft standard

previously reserved words, F–14
SQLABC field of SQLCA, C–3
SQLAID field of SQLCA, C–3
SQLCA, C–1

and string truncation, C–7
declaring explicitly, C–2
description of fields, C–2
error return codes, C–3
in Ada, C–13
in BASIC, C–13
in C, C–15
in COBOL, C–16
in FORTRAN, C–16
in INCLUDE statement, C–1
in Pascal, C–17
in PL/I, C–18
list information in SQLERRD array, C–11
query cost estimates in SQLERRD array,

C–11
SQLABC field, C–3
SQLAID field, C–3
SQLCODE field, C–2, C–3
SQLERRD array, C–10

and counts, C–10
and dynamic SELECT, C–11
and OPEN list cursor, C–11
and OPEN table cursor, C–11
dynamic SQL and, C–10

SQLERRD field, C–2
SQLWARN fields, C–11

SQLCHRONO_SCALE field of SQLDA2
codes for date-time data types, D–25

SQLCODE field, C–3
declaring explicitly, C–2
error status code, C–3
value of return code, C–3

Index–6

SQLDA, D–1
data types returned for parameter markers,

D–4
declared by INCLUDE, D–3
declaring for

Ada, D–6
BASIC, D–7, D–17
C, D–8
PL/I, D–8

description of fields, D–9
for date-time data types

See SQLDA2
in DESCRIBE statement, D–9
in EXECUTE statement, D–3, D–9
in FETCH statement, D–3, D–9
information about select lists, D–1
in OPEN statement, D–2, D–9
in PREPARE statement, D–9
in programs, D–3
parameter markers, D–2
purpose, D–1
related parameters, D–14
related SQLDAPTR declaration, D–14
related SQLSIZE declaration, D–14
setting SQLTYPE field to convert data types,

D–14
SQLDABC field, D–9
SQLDAID field, D–9
SQLDAPTR parameter, D–14
SQLDATA field, D–9
SQLD field, D–9
SQLIND field, D–9
SQLLEN field, D–9
SQLNAME field, D–9
SQLSIZE parameter, D–14
SQLTYPE field, D–9
SQLVAR field, D–9
structure, D–5
using multiple, D–3

SQLDA2, D–15
codes for date-time data types, D–25
codes for interval data types, D–24
declaring for

C, D–18
description of fields, D–18

SQLDABC field of SQLDA, D–9
SQLDAID field of SQLDA, D–9
SQLDAPTR parameter, D–14
SQLDATA field

allocating dynamic memory for, D–18
SQLDATA field of SQLDA, D–9
SQLD field of SQLDA, D–9
SQLERRD array of SQLCA, C–10

dynamic SELECT and, C–11
list information, C–11
query cost estimates, C–11

SQLIND field of SQLDA, D–9
SQLINI command file

logical name, E–2
SQLLEN field

of SQLDA, D–9
of SQLDA2

codes for interval data types, D–24
use in SQLDA contrasted with use in

SQLDA2, D–18
SQL module processor

command line qualifiers, F–6
SQLN

SQLDABC field, D–9
SQLNAME field of SQLDA, D–9
SQLN field of SQLDA, D–9
SQL precompiler

sql_get_error_text routine, C–12
sql_signal routine, C–12

SQLSIZE parameter, D–14
SQLSTATE, C–19
SQLTYPE field of SQLDA, D–9, D–12

setting to convert data types, D–14
SQLVAR field of SQLDA, D–9
SQLWARN fields of SQLCA, C–11
sql_get_error_text routine, C–12
sql_signal routine, C–12
SQRT function, G–11
Standards, B–1
STARTING WITH predicate

returning data types for parameter markers,
D–4

String truncation
and SQLCA, C–7

Index–7

SUBSTRB function, G–11
SUBSTR function, G–11
Syntax

incompatible changes, F–1
SYS$CURRENCY logical name, E–2
SYS$DIGIT_SEP logical name, E–3
SYS$LANGUAGE logical name, E–3
SYS$RADIX_POINT logical name, E–3
SYSDATE function, G–3
System table, I–1

detailed, I–1

T
Tables

system, I–1
TAN function, G–11

TANH function, G–12
Truncating

strings, C–7
TRUNC function, G–3

U
UNIQUE predicate, F–8
UPDATE statement

number of rows modified, C–10

V
Variable

SQLDA, D–1
SQLDA2, D–15

Index–8

